Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Модель прогноза эпидемий петербургских ученых подтвердила свою эффективность
Ученые СПбГУ подтвердили эффективность созданной ими ранее математической модели прогнозирования развития эпидемий. Основой анализа стали ретроспективные данные пандемии коронавируса в Москве и Санкт-Петербурге в 2020-2021 году. Вероятность ошибки модели не превысила одного процента.
Результаты исследования опубликованы в научном журнале «Вопросы вирусологии». В 2021–2022 годах коллектив ученых Центра аналитики динамических процессов и систем СПбГУ разработал новый подход к исследованию динамических систем притока и оттока со стохастическими параметрами и новую методологию прогнозирования динамики таких систем. С помощью своей разработки Математики Университета смогли определить новые пики роста заболеваемости пандемии коронавируса и ключевые показатели распространения заболевания.
В основу системы легла гипотеза о природном характере влияния многочисленных факторов на динамику заболеваемости и распространения эпидемии. Поэтому в качестве математической модели математики СПбГУ использовали динамическую игру против природы. Оказалось, что динамика распространения новых вирусов, как и динамика роста численности населения отдельных стран или всей планеты, может быть описана с помощью модели со стохастическими, то есть случайными, параметрами. Такой подход позволил несколько раз с высокой точностью спрогнозировать рост числа заболевших в Санкт-Петербурге.
Разработка математиков СПбГУ верно спрогнозировала динамику количества заболеваемости в пик пандемии. Об этом Виктор Захаров рассказывал в интервью. Уже после первого месяца наблюдений модель с высокой точностью прогнозировала общее количество заболевших на ближайшие три-четыре недели. Позднее математики модифицировали свою разработку, адаптировав ее для прогноза любых эпидемий.
Математические модели динамических систем постоянно нуждаются в обновлении, принимая в расчет все больше факторов. Для подтверждения эффективности и работоспособности модели, ученые провели ретроспективный анализ и составили прогноз распространения вирусов в реальном времени, на примере Covid-19 в Санкт-Петербурге и в Москве в пик пандемии.
«Представленные в работе ретроспективные двухнедельные прогнозы общего количества заболевших и количества активных случаев Covid-19 продемонстрировали достаточно высокую точность как в Москве, так и в Санкт-Петербурге. Ошибка MAPE (mean absolute percentage error) общего количества заболевших на пиках заболеваемости, как правило, не превышала одного процента, что можно считать хорошим и достоверным результатом с точки зрения прогнозирования», — сказал научный руководитель Центра аналитики динамических процессов и систем, профессор СПбГУ Виктор Захаров.
В рамках своего исследования ученые Университета сравнили прогнозные и фактические показатели о количестве новых случаев заражения коронавирусом, общее количество заболевших и их динамику на фоне появления новых штаммов Covid-19 для Москвы и Санкт-Петербурга. Так, данные прогнозов, составленных до апреля 2020 года, имели отклонение от фактических в среднем до 20 процентов. Тогда как к началу мая 2020 года, когда модель обучилась на данных марта-апреля, ошибки уже в среднем не превышали одного процента.
Таким образом, исследование показало, что созданная математиками Санкт-Петербургского университета модель по своим показателям превосходит существовавшие ранее аналоги SIR и ARIMA. Следует отметить, что данные модели до недавнего времени были основными прогностическими инструментами, на которые могли опирать органы государственной власти. В СПбГУ же предложили более точную альтернативу.
Следует отметить, что проект разработки модели прогнозирования эпидемий был поддержан грантом Санкт‑Петербургского научного фонда, созданного в 2021 году по поручению губернатора Александра Беглова.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
