Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинный интеллект нашел сети с квантовым ускорением
Российские ученые из МФТИ, ФТИАН и ИТМО создали нейросеть, которая научилась предсказывать поведение квантовой системы, «взглянув» на ее схему. Такая нейросеть самостоятельно находит те решения, которые хорошо подходят для демонстрации квантовых преимуществ. Это поможет исследователям разрабатывать эффективные квантовые компьютеры.
Результаты опубликованы в New Journal of Physics.
Большой круг задач современной науки решается на основе квантово-механических расчетов. Например, химические и биологические: исследования химических реакций или поиск устойчивых молекулярных структур для промышленности, медицины, фармацевтики и других областей. Для точного решения такого рода «квантовых» задач хорошо подходят квантовые вычисления, в отличие от классических, на основе которых квантовые задачи решаются в большинстве случаев лишь громоздко и приближенно.
Процесс создания квантовых вычислительных схем — трудоемкое и дорогостоящее занятие. Не всегда получившиеся устройства показывают «квантовое превосходство» — демонстрируют скорость обработки информации быстрее обычного классического компьютера. Поэтому ученым хотелось бы иметь инструмент для прогнозирования того, будет ли какая-то схема обладать квантовым преимуществом или нет.
Одной из реализаций квантовых вычислений являются квантовые блуждания. Упрощенно можно представить этот метод как перемещение частицы по определенной сети, составленной из точек-узлов и соединений между этими узлами. Такие сети и образуют схему квантовой системы.
Если квантовое перемещение частицы — блуждание — из одного узла сети в другой оказывается быстрее классического, то можно говорить, что устройство на основе такой схемы показывает квантовое преимущество. Поиск сетей, обладающих квантовым преимуществом, является важной задачей, над которой работают эксперты в области квантовых блужданий.
Идеей Алексея Мельникова, Леонида Федичкина и Александра Алоджанца было заменить эксперта машинным интеллектом: научить компьютер различать сети и давать ответ на вопрос, в каких сетях квантовые блуждания будут давать преимущество. То есть обнаружить сети на основе которых имеет смысл строить квантовый компьютер.
Исследователи взяли нейросеть, которая «специализировалась» на распознавании изображений. На вход программе подавалась матрица смежности сети и номер входного и выходного узла. На выходе нейросеть давала ответ, будет ли квантовое блуждание между этими узлами быстрее классического.
«Было неочевидно, что этот подход сработает, Но он работает, и мы очень успешно научили компьютер самостоятельно предсказывать квантовое преимущество в сетях сложной структуры», — говорит Леонид Федичкин, доцент кафедры теоретической физики МФТИ. «Грань между квантовым и классическим поведением систем зачастую размыта. Изюминкой нашей работы стало создание особого компьютерного зрения, с помощью которого удалось увидеть эту грань в пространстве сетей», — поясняет Алексей Мельников, научный сотрудник ИТМО.
Исследователи создали инструмент, позволяющий упростить разработку вычислительных схем на основе квантовых алгоритмов, основными приложениями которых должны стать биофотоника и материаловедение. Например, с помощью квантовых блужданий легко описываются возбуждение фоточувствительных белков, таких как родопсин или хлорофилл.
Белок — это в каком-то смысле сложная молекула, похожая на сеть. Задача понять, что произойдет с электроном, попавшим в какую-то точку в молекуле, как он будет двигаться и какое возбуждение вызывает, в переводе на формальный язык и есть поиск времени блуждания из одного узла сети в другой. Ожидается, что расчет естественных природных процессов на квантовых блужданиях реализовать проще, чем на архитектуре из кубитов и гейтов, так как сами блуждания — это естественный физический процесс.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Амфибии страдают от отдельных видов смертельно опасных заболеваний, среди которых выделяются грибковые инфекции. Ученые выяснили, что торговля лягушками из Бразилии, часто бывшими носителями местного вида грибка, привела к его глобальному распространению.
Израильские специалисты выяснили, что для гарантированного выигрыша в онлайн-шахматах достаточно получить помощь специальной компьютерной программы всего в трех ключевых моментах игры. Этот метод настолько изощрен, что современные автоматические системы защиты могут пропустить его, списав гениальные ходы на внезапное озарение игрока. В мире, где ежедневно закрывают тысячи аккаунтов игроков в шахматы за нечестную игру, возникает новая, более сложная для обнаружения угроза — избирательное читерство.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
