Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Как квази-КТ помогает спланировать высокоточную лучевую терапию
За последние 100 лет медицинская визуализация совершила рывок. Отныне можно точнее планировать лучевую терапию при опухолях. Как в будущем врачи смогут рассчитывать оптимальную дозу облучения и что такое квази-КТ, рассказал научный сотрудник лаборатории Philips Research Lab Rus Жоэль Штадельманн.
— Для начала расскажите, как работает лучевая терапия при лечении онкологических заболеваний и почему часто говорят о ее вреде для здоровья пациентов?
— Онкологические заболевания занимают второе место среди причин смерти населения, уступая первенство лишь сердечно-сосудистым патологиям. К настоящему времени разработано множество методов лечения рака, один из наиболее эффективных — лучевая терапия.
Этот метод заключается в воздействии на опухоль ионизирующим излучением — электромагнитными волнами рентгеновского или гамма-диапазона — либо потоком элементарных частиц (альфа- и бета-частицы, нейтроны, протоны). К сожалению, такое излучение уничтожает не только раковую опухоль, но и повреждает окружающие здоровые ткани. Такое побочное воздействие наносит вред организму и вызывает множество негативных последствий.
— И как можно снизить воздействие на здоровые ткани?
— Одним из способов снижения побочного эффекта от лучевой терапии является точное планирование ее сеанса и «фокусировка» излучения, направляемого на пораженную область. Цель этой процедуры — максимальная концентрация излучения на пораженных клетках и его минимизация воздействия на здоровые ткани. Для этого врачу необходимо рассчитать два важных параметра.
Во-первых, требуется рассчитать минимальную дозу излучения, необходимую для эффективного уничтожения раковых клеток. Основные механизмы воздействия ионизирующего излучения на вещество (в том числе на биологические ткани) заключаются во взаимодействии с электронами, которые принадлежат атомам этого самого вещества.
Поэтому для оценки требуемой дозы радиации необходимо знать электронную плотность вещества, то есть количество электронов в единице объема. Эта информация может быть получена с помощью компьютерной томографии (КТ), в основе которой лежит поглощение рентгеновского излучения электронами.
Во-вторых, необходимо с миллиметровой точностью определить местонахождение опухоли и привязать это к положению ключевых анатомических структур. КТ-снимки, полученные на первом этапе, не позволяют сделать этого, поскольку не обладают достаточным контрастом.
А зачастую различные ткани мало различаются между собой. Поэтому для их локализации используется метод магнитно-резонансной томографии (МРТ). Это исследование позволяет визуализировать даже незначительные различия биологических свойств расположенных рядом тканей, провести между ними границу и выделить (сегментировать) опухоль.
Отметим, что в основе МРТ лежит явление ядерного магнитного резонанса (ЯМР) на ядрах водорода, и этот метод не предоставляет необходимой информации об электронной плотности. Таким образом, КТ все равно остается необходимым этапом диагностики.
— Очевидно, что этот подход усложняет организацию процесса лечения. В чем еще состоят его сложности?
— Этот подход к планированию лучевой терапии, действительно, имеет несколько недостатков. Так, при КТ-исследовании пациент получает дополнительную дозу рентгеновского облучения. Проведение двух исследований (МРТ и КТ) значительно повышает стоимость подготовки к лучевой терапии.
К тому же различия в положении тела пациентов при МРТ и КТ-исследованиях или различия в состоянии внутренних органов (например, МРТ-исследование было выполнено до приема пищи, а КТ — после) во многом усложняют процесс сопоставления результатов диагностики и снижают точность планирования.
— Существует ли решение проблемы?
— Чтобы преодолеть это затруднение, была предложена следующая идея. По сути, и МРТ, и КТ характеризуют свойства одних и тех же биологических тканей человека, но на разном уровне: МРТ — на уровне ядер водорода молекул воды, а КТ — на уровне электронов более тяжелых атомов, составляющих эту ткань. Можно ли, зная только одну характеристику, рассчитать другую? Да, это возможно!
Химия и физика твердого тела исследуют взаимодействия ядер и электронов атомов уже много лет. Поэтому, казалось бы, такой расчет должен быть легковыполнимым. Однако МРТ и КТ работают на разных химических элементах, поэтому точный квантово-механический расчет КТ снимков по МРТ-изображениям пока не представляется возможным.
Поэтому необходимо искать другие, нестрогие методы получения КТ-изображений. Полученные такими нестрогими способами изображения называются квази-КТ и могут быть использованы для составления плана лучевой терапии.
— Расскажите подробнее об этом подходе. Как можно создавать одно изображение из другого?
— Раньше для решения задачи перевода МРТ в квази-КТ использовались статистические методы. Они заключаются в предположении, что если МРТ изображения одной и той же части тела двух различных пациентов схожи, то схожими должны быть и соответствующие КТ-изображения. Поэтому, набрав большую базу знаний из парных МРТ и КТ-снимков, можно по одиночному МРТ-снимку делать предположения о том, как будет выглядеть соответствующий КТ-снимок.
Искусственный интеллект позволяет значительно улучшить качество квази-КТ изображений по сравнению со статистическим подходом. В научно-исследовательской лаборатории Philips Research в Сколково активно развиваются два подхода для решения этой задачи.
В первом подходе, который называется «парный» перевод, используются снимки пациентов, прошедших оба исследования — и МРТ, и КТ. Эти снимки тщательно выравниваются между собой, а затем нейронная сеть учится воссоздавать квази-КТ-снимок, увидев лишь МРТ-изображение.
При этом в качестве эталона используется настоящий КТ-снимок той же самой области того же самого пациента. Целью такого обучения является создание квази-КТ-изображения, максимально похожего на реальный КТ-снимок. Когда квази-КТ достигает нужного качества, процесс обучения останавливается — и нейронная сеть может воссоздавать КТ-снимки.


— Подход кажется простым. Почему им не пользуются во всех больницах?
— Такой подход имеет свои недостатки. Во-первых, для обучения любой нейронной сети требуется множество изображений, а доступных и качественных «парных» изображений МРТ и КТ достаточно мало. Во-вторых, обученная нейронная сеть хорошо работает только для той части тела, которую она видела в процессе обучения.
Для использования на другой части тела потребуется переподготовка сети. В-третьих, обученная сеть хорошо работает только для того типа МРТ-изображений, на которых она училась. Для другого типа изображений, опять же, потребуется переобучение.
— А в чем заключается второй подход?
— Во втором разрабатываемом подходе, который называется «непарным», используются МРТ и КТ-изображения, полученные от разных пациентов. Это значит, что для обучения можно использовать не только парные МРТ и КТ-изображения пациентов, но любые МРТ или КТ-изображения выбранной области.
Поэтому объем доступных данных гораздо больше, а значит, тренировать такие нейронные сети проще. Эта нейронная сеть, которая называется генеративно-состязательной сетью (подробнее о таких сетях было рассказано здесь), состоит из двух блоков. Первый блок предназначен для перевода МРТ-изображений в КТ, а второй — переводит КТ-изображения в МРТ.
В процессе обучения используется следующий трюк: на вход сети подается МРТ-изображение, которое переводится первым блоком в квази-КТ-изображение. Затем это изображение поступает на вход второго блока, который переводит квази-КТ-изображение в квази-МРТ.
В результате такого процесса должно получиться квази-МРТ-изображение, максимально похожее на исходное, настоящее МРТ-изображение. Также процесс обучения сети выполняется и с другой стороны: настоящее КТ-изображение переводится в квази-МРТ, которое переводится в квази-КТ.
Полученное квази-КТ-изображение должно максимально совпадать с исходным КТ-изображением. Этот второй цикл обучения КТ –> квази-МРТ –> квази-КТ позволяет узнать сети, как же должны выглядеть КТ-снимки.
Без этого цикла сеть будет переводить МРТ-изображение в психоделические картинки, абсолютно далекие от нужных КТ-снимков. В результате многократного выполнения каждого из этих циклов оба блока нейронной сети выучиваются переводить МРТ в квази-КТ и КТ в квази-МРТ соответственно.
— Какие, на ваш взгляд, перспективы внедрения такого метода работы с медицинскими изображениями в ближайшем будущем?
— Уже сейчас парный подход, разрабатываемый в лабораториях компании Philips, позволяет рассчитать квази-КТ настолько точно, что существующие методы не позволяют отличить его от настоящего. К сожалению, пока «непарный» подход не позволит рассчитать квази-КТ-изображения для таких анатомически сложных структур, как нос.
Но для более регулярных органов, таких как головной мозг, этот метод демонстрирует неплохие результаты, достаточные для клинического использования. Таким образом, в будущем методы можно будет распространять и на другие зоны тела.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно