Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Иммунная система насекомых оказалась умнее, чем думали ученые
Ученые обнаружили сложную систему молекулярных механизмов, отвечающих за иммунный ответ дрозофилы на различные патогены. Выяснилось, что при заражении грамположительными бактериями и грибами, которые обычно активируют только сигнальный путь Toll, клетки насекомого способны дополнительно задействовать IMD-путь. Такой комбинированный механизм позволяет усилить защиту против патогенов, которые одновременно могут запускать оба пути — IMD и Toll. Эти данные будут полезны для разработки новых стратегий борьбы с вредителями сельскохозяйственных культур.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в Journal of Invertebrate Pathology. Иммунный ответ насекомых на патогены, например бактерии и микроскопические грибы, задействует два сигнальных пути — IMD и Toll. Молекулярные механизмы этих путей различаются архитектурой сигнальных каскадов, то есть молекулами, вовлеченными в ответ. Так, оба пути приводят к активации генов антимикробных пептидов, которые обеспечивают защиту насекомого, но в случае IMD-пути в активации участвует регуляторный белок Relish, а в случае Toll-пути — белки Dif и Dorsal.
При этом обычно Toll-путь активируется в ответ на грамположительные (с толстой клеточной стенкой и без наружной мембраны) бактерии, а IMD-путь — при заражении грамотрицательными (с тонкой клеточной стенкой и дополнительной наружной мембраной) бактериями, однако пути могут комбинироваться. Механизмы, с помощью которых патогены запускают перекрестную активацию IMD- и Toll-путей, до сих пор остаются предметом научных дискуссий.

Ученые из Института биологии гена РАН (Москва) впервые подробно исследовали молекулярные механизмы перекрестной активации путей IMD и Toll. Для этого авторы использовали макрофагоподобную культуру клеток Шнайдера (S2) дрозофилы. Они служат удобным инструментом в молекулярной биологии, поскольку в них можно моделировать активацию множества сигнальных путей, включая врожденный иммунный ответ.
Линию клеток S2 дрозофилы обрабатывали культурами различных патогенов: грамотрицательной бактерией Escherichia coli, грамположительными бактериями Micrococcus luteus и Bacillus subtilis, а также спорами гриба Metarhizium anisopliae. Эти виды выбрали потому, что они являются характерными представителями микроорганизмов с различной структурой клеточных стенок, что позволяет комплексно исследовать активацию различных иммунных путей у дрозофилы.
В экспериментах перекрестная активация IMD и Toll-путей проявлялась в значительном усилении работы IMD-зависимых генов антимикробных пептидов и активном вовлечении в их регуляцию белка Relish. Чтобы дополнительно убедиться в роли белка Relish, авторы подавили работу гена, который его кодирует. Это привело к резкому снижению активности генов антимикробных пептидов. Наиболее выраженные эффекты наблюдались при обработке клеток S2 грамположительной бактерией Micrococcus luteus. Авторы предполагают, что такая специфичность может объясняться либо штамм-зависимыми особенностями Micrococcus luteus, либо уникальной структурой одного из компонентов ее клеточной стенки, которая отличается от таковой у других грамположительных бактерий.
«Наши исследования показывают, что определенные патогены способны не только значительно активировать свои собственные сигнальные пути, но и переключаться на другие. Это указывает на то, что иммунная система насекомых обладает большей гибкостью, чем предполагалось в предыдущих исследованиях. Кроме того, мы уже подтвердили, что аналогичная перекрестная активация наблюдается и у взрослых особей дрозофилы. Результаты этой работы мы планируем в скором времени опубликовать.
Сейчас на примере дрозофилы мы продолжаем изучать вклад разных высококонсервативных регуляторных белков в формирование врожденного иммунного ответа. В частности, полученные нами данные указывают на то, что белок SAYP, гомолог которого есть у человека (PHF10), играет ключевую роль в иммунной защите насекомых», — рассказывает руководитель проекта, поддержанного грантом РНФ, Заур Качаев, кандидат биологических наук, научный сотрудник лаборатории молекулярной организации генома Института биологии гена РАН.
Кроме того, авторы планируют исследовать взаимосвязь врожденного иммунного ответа с другими сигнальными путями насекомых. В частности, научный коллектив недавно установил связь иммунного ответа с гормональной системой. Исследователи продемонстрировали, что преактивация гормональной системы критически важна для эффективной иммунной защиты насекомых от грамположительных бактерий.
Благодаря сходству в работе иммунной системы у разных насекомых, полученные данные можно использовать для исследования других видов. Это позволит лучше подбирать генетические или фармакологические технологии для борьбы с различными вредителями в сельском хозяйстве, минимизируя потенциально негативное влияние на конечный продукт, например культуры растений.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
В современном рельсовом транспорте каждый цикл разгона и торможения напрямую зависит от большого количества энергии. И если набор скорости потребляет мощность, то торможение, наоборот, производит ее в избытке. Проблема в том, что значительная часть этой энергии пропадает впустую, буквально сгорая при нагреве контактной сети и тормозных систем. Но уже есть электрохимические и емкостные накопители энергии, которые могут собирать, хранить и возвращать в сеть драгоценные киловатт-часы, делая транспорт одновременно дешевле и экологичнее. Как предполагают белорусские инженеры, в перспективе подобные накопители станут одним из ключевых элементов энергоэффективной транспортной инфраструктуры uST.
Оказалось, именно внешний слой определяет форму корня растения и его механические свойства. Это открытие позволит ученым лучше адаптировать сельскохозяйственные культуры к сложным почвам.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Обычно, увидев черную плесень в помещении, мы стремимся избавиться от нее как можно скорее. Микроскопический гриб Aspergillus niger обладает уникальной живучестью и умением приспосабливаться к любым неблагоприятным условиям среды, но для человека воспринимается как признак бытовой неприятности. Он портит еду, размножается в сырых углах, вызывает аллергию и ассоциируется с антисанитарией. Однако именно эти качества — устойчивость к токсичным веществам и способность расти в экстремальных условиях — оказались ключевыми для неожиданной сферы его применения. Ученые задействовали этот гриб для утилизации одного из самых проблемных промышленных загрязнителей — трибутилфосфата.
В России существуют тысячи рабочих мест с вредными и опасными условиями труда. На шахтах, металлургических заводах, в авиастроении люди годами находятся в условиях сильного шума, вибрации, запыленности и контакта с химикатами, что наносит серьезный ущерб здоровью. Однако существующие методы оценки рисков оказываются неэффективными для прогнозирования заболеваний, поскольку работают с усредненными показателями группы, а обязательные медосмотры определяют уже наступившую болезнь. Такая система лечит последствия, но не предотвращает причину. Ученые Пермского Политеха, управления Роспотребнадзора и ФНЦ медико-профилактических технологий управления рисками здоровью населения разработали программу, которая прогнозирует индивидуальные профессиональные риски здоровью для каждого конкретного работника с точностью 89%.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
