Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики пересмотрели законы образования снежинок, дождевых капель и колец Сатурна
Исследователи из Сколтеха вывели новые математические уравнения, описывающие поведение агрегирующих частиц в газообразных средах. Полученные формулы помогут моделировать многие природные и технологические процессы: от формирования капель дождя и снежинок до движения гранул и порошков по трубам и даже образования колец вокруг планет-гигантов. Новые уравнения замещают два набора старых, которые приходилось «механически» сочетать, что приводило к недопустимо высокой для ряда приложений погрешности.
Результаты исследования опубликованы в журнале Physical Review Letters. Процессы агрегации в газообразных средах исключительно многообразны: они наблюдаются в атмосферных явлениях, на промышленном производстве и даже в космосе. К ним, например, относятся образование дождя из капель тумана и снежинок — из микрокристалликов льда. Они же отвечают за образование колец Сатурна и других планет-гигантов из оказавшихся на орбите мелких частиц. Это явление также актуально для ряда технологий: аэрозольного окрашивания, транспортировки порошкообразных веществ, контролируемых взрывов и так далее. Чтобы понимать и прогнозировать эти процессы, а также управлять ими, ученым нужны адекватные математические модели агрегации в газообразных средах.
В начале XX века польский физик Мариан Смолуховский сформулировал уравнения, описывающие агрегационные процессы с точки зрения количества агрегатов разного размера и скорости агрегации — кинетических коэффициентов, отражающих то, как быстро агрегаты объединяются с образованием более крупных частиц. Однако классические уравнения Смолуховского справедливы для систем без каких бы то ни было пространственных неоднородностей и потоков. А реальные процессы, разумеется, происходят не в идеально однородных системах.
При описании поведения агрегирующих частиц в реальных условиях земной атмосферы, космоса или промышленных объектов приходится «механически» совмещать формулы Смолуховского с уравнениями Эйлера либо (в более общем случае) Навье — Стокса. Первые выведены в середине XVIII века, вторые — в середине XIX. И те и другие дают фундаментальное описание движения жидкостей и газов. Тем не менее, в виде «гибрида» с уравнениями Смолуховкого и те и другие приводят к нестыковкам, что в ряде приложений влечет за собой недопустимо высокую погрешность или вовсе качественные расхождения с реальностью.
Выход из ситуации предложили в своей недавней статье в Physical Review Letters старший научный сотрудник Александр Осинский и профессор Николай Бриллиантов из Центра искусственного интеллекта Сколтеха. Вместо того чтобы продолжать поиск путей примирить друг с другом два набора старых уравнений, исследователи из Сколтеха на основе математического подхода и базовых принципов выводят новые гидродинамические уравнения с новыми кинетическими коэффициентами.
«Удивительно, но полученные коэффициенты не являются ни коэффициентами скоростей реакции, как в уравнениях Смолуховского, ни транспортными коэффициентами, как в уравнениях Навье — Стокса. Эти кинетические коэффициенты новой природы сочетают в себе свойства транспортных и реакционных коэффициентов. Причем для агрегирующих флюидов они имеют такое же фундаментальное значение, как вязкость или теплопроводность для обычных жидкостей, — рассказал Бриллиантов. — Наша подробная компьютерная симуляция показала, что предложенные гидродинамические уравнения Смолуховского — Эйлера с новыми коэффициентами весьма точны и адекватны для моделирования технологически значимых агрегирующих флюидов».
Новые уравнения повысят точность моделей, используемых при анализе загрязнения воздуха частицами твердой фазы, в аэрозольных и порошковых технологиях, быстром транспорте мелкодисперсных сред и в некоторых задачах при проектировании самолетов и автомобилей.
Исследование поддержано грантом Российского научного фонда.
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.
Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.
Согласно популярному утверждению, человеческая мысль — едва ли не самое быстрое, что существует в природе. Даже свет многие считают менее быстрым, поскольку он распространяется со скоростью 300 тысяч километров в секунду, а мысль — «мгновенно». Однако новое исследование опровергло бытовую логику. Ученые из Калтеха измерили скорость, с которой человек обрабатывает информацию, и обнаружили, что основные когнитивные процессы во много раз медленнее не только распространения света, но и низкоскоростного интернета.
Группа климатологов проанализировала массив спутниковых снимков озер и водохранилищ по всей планете, сделанных с 1984 по 2021 год. Ученые обратили внимание на цвет поверхности водоемов и выяснили, что у большинства он изменился — преимущественно в сторону коротковолнового диапазона. Иными словами, экология десятков тысяч озер оказалась нестабильной.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии