Алмазный «револьвер» защитит линии квантовой связи — Naked Science
12 минут
ФизТех

Алмазный «револьвер» защитит линии квантовой связи

3.9

Ученые из МФТИ и Университета Зигена приблизились к созданию быстрых однофотонных источников для квантовых линий связи и квантовых компьютеров будущего.

Алмазный «револьвер» защитит линии квантовой связи / ©mineralpro.ru

Исследователи из Московского физико-технического института и Университета Зигена объяснили механизм генерации одиночных фотонов в алмазных диодах. Результаты работы, опубликованной в одном из ведущих физических журналов Physical Review Applied, открывают путь к созданию быстрых однофотонных источников для квантовых линий связи и квантовых компьютеров будущего.


Работа устройств на уровне одиночных фотонов открывает возможность создания принципиально новых систем для коммуникаций и вычислений, начиная от аппаратных генераторов истинно случайных чисел до квантовых компьютеров. Пожалуй, самой востребованной квантовой технологией сегодня является квантовая связь. Методы квантовой криптографии, опирающиеся на законы квантовой физики, позволяют защитить передаваемые данные так, что их фундаментально невозможно будет перехватить, при этом не важно, какими устройствами обладает злоумышленник, пусть даже и сверхмощным квантовым компьютером. Однако практическая реализация линий квантовой связи и других квантовых устройств требует эффективной генерации одиночных фотонов.

С практической точки зрения необходимо, чтобы источники одиночных фотонов работали при комнатной температуре и от электрической накачки, то есть в нормальных условиях и от батарейки. Несмотря на очевидность этих требований, соблюсти их оказывается крайне сложно. Во-первых, все квантовые системы не любят высоких температур, а это значит, что для их охлаждения требуется холодильник или криостат, охлаждающий их по крайней мере до температуры жидкого гелия, а то и ниже — до нескольких милликельвинов, что составляет приблизительно −273 градуса по шкале Цельсия.

Алмазный «револьвер» защитит линии квантовой связи
Однофотонная дуэль

Хотя использование таких установок у физиков уже вошло в привычку, едва ли в ближайшее время удастся создать подобный холодильник стоимостью в несколько долларов, а значит, стоит забыть о массовом использовании подобных квантовых систем. Во-вторых, сама концепция квантовых систем подразумевает, что они практически не взаимодействуют с окружающим миром, по крайней мере неконтролируемо. Примером такой системы служит одиночный атом в камере с разреженным газом.

Тем не менее, несмотря на то, что его взаимодействие с окружающей средой практически отсутствует, физики могут управлять его электронными состояниями, облучая камеру лазером и тем самым заставляя атом излучать одиночные фотоны. Однако накачивать электрически такую квантовую систему не представляется возможным. Активные исследования в области квантовой оптики и квантовой электроники в последние два десятилетия показали, что не только атомам газов, но и даже полупроводниковым структурам, таким как квантовые точки, не под силу справиться с задачей эффективной работы от электрической накачки при комнатной температуре, в то время как многие другие материалы просто не проводят ток.

Выходом из сложившейся тупиковой ситуации довольно неожиданно стал алмаз — материал с очень необычными свойствами на стыке полупроводников и диэлектриков. Оказалось, что в алмазе центры окраски — точечные дефекты в кристаллической решетке, возникающие при случайном попадании или направленной имплантации в алмаз посторонних атомов — могут выступать в роли квантовых систем и показывать превосходные излучательные характеристики. Более того, удалось продемонстрировать, что при пропускании тока эти квантовые системы могут излучать одиночные фотоны. Однако физика происходящего процесса была неизвестна и не было понятно, что нужно делать, чтобы создать на основе центров окраски быстрые и эффективные источники.

В своей работе физики из МФТИ и Университета Зигена установили механизм однофотонного излучения NV-центров в алмазе при пропускании тока и определили, что влияет на динамику излучения фотонов. Согласно их исследованиям, процесс можно разделить на три стадии: (1) захват электрона центром окраски, (2) захват дырки (или, что то же, отдача электрона), (3) переход между электронными уровнями в центре окраски, которые вместе формируют механизм, похожий на принцип действия револьвера.

Представим, что выстрел — это излучение одиночного фотона. Чтобы выстрелить, нужно сначала большим пальцем взвести курок (дефект должен захватить электрон). Затем нужно нажать на спусковой крючок. Это запускает спусковой механизм, и курок, обретя импульс, ударяет по капсюлю патрона. Именно этому «обратному» ходу курка и соответствует захват дырки центром окраски в алмазе. Далее заряд в капсюле взрывается, поджигает порох и под действием пороховых газов вылетает пуля. Аналогичным образом дырка в центре окраски испытывает переходы между возбужденными уровнями и основным уровнем, в результате чего происходит эмиссия фотона. Затем все повторяется по тому же сценарию за одним лишь исключением: нам не нужен новый патрон, центр окраски может излучить сколько угодно фотонов по одному за раз.

На практике очень важно получать фотоны именно в моменты времени, когда они нужны, поскольку после генерации фотоны улетают со скоростью света. «Вспомните ковбойские дуэли в вестернах. Например, два стрелка начинают стрелять строго по бою часов. Побеждает обычно тот, кто выстреливает первым. Ценой за промедление является жизнь. Точно так же для квантовых устройств жизненно важно генерировать фотоны «по требованию» в строго определенные моменты времени», — говорит Дмитрий Федянин. В своей работе исследователи показывают, что определяет время отклика алмазного однофотонного источника, то есть через какое время он может излучить фотон и какова вероятность испустить еще один фотон через время τ после испускания первого.

Оказывается, что этими временами можно управлять и на порядки улучшать их как путем изменения характеристик алмаза, например при помощи легирования, так и контролируя концентрации инжектированных в алмаз носителей заряда. Кроме того, по словам Дмитрия Федянина, помещая центр окраски в разные области алмазного диода, можно управлять начальным состоянием центра окраски, подобно тому как стрелки предварительно взводят курок, чтобы быстрее выстрелить, или ставят револьвер на предохранитель.

Предложенная исследователями физическая модель отвечает на фундаментальные вопросы о поведении центров окраски в алмазе. Разработанная теория не только качественно объясняет, но и количественно воспроизводит недавние экспериментальные результаты. Это открывает путь к созданию практичных источников однофотонного излучения с заданными характеристиками, что необходимо для реализации устройств квантовой информации, таких как защищенные линии связи на основе квантовой криптографии.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Вчера, 10:26
9 минут
НИУ ВШЭ

Психолингвисты из Центра языка и мозга НИУ ВШЭ совместно с коллегами из Городского университета Нью-Йорка и Университета Штутгарта выяснили, чем отличается чтение на русском языке у разных групп читателей. Для этого они впервые использовали новый для билингвизма метод сравнения движения глаз взрослых носителей русского языка, русскоязычных детей и взрослых билингвов с разным уровнем владения языком.

Вчера, 16:35
9 минут
Мария Азарова

Шотландские исследователи провели когортный анализ: они сравнили риск госпитализации при заражении индийским и британским штаммами коронавируса, а также определили, кого вариант из Индии поражает чаще всего.

Вчера, 21:06
12 минут
Василий Парфенов

Немецко-российская группа ученых проверила при помощи моделирования противоречивую гипотезу о природе циклов солнечной активности. Результатом симуляции стали сразу несколько любопытных ответов. Во-первых, оказалось, что все краткосрочные циклы длительностью до пары сотен лет объясняются внешними причинами, а не внутренней природой звезды. Во-вторых, появился веский повод сомневаться даже в теоретической возможности долгосрочных предсказаний изменений активности магнитного поля Солнца.

12 июня
58 минут
Николай Цыгикало

Грохот уходящих в космос ракет, гигантские столбы огня, колоссальная сила, превосходящая силу тяжести. Форсажный рев боевых самолетов. Самое громкое и мощное силовое устройство человека. Все это — канал особой формы и особых свойств, радикально изменивший человечество. В чем его суть и как происходит трудное рождение сверхзвука — читайте в нашем материале.

15 июня
4 минуты
Сергей Васильев

Галактические нити крупномасштабной структуры Вселенной тянутся на сотни миллионов световых лет — и, как оказалось, вращаются, увлекая в движение все свои галактики.

12 июня
9 минут
Василий Парфенов

Российские эпидемиологи считают, что в столице могла появиться своя разновидность вируса SARS-CoV-2. Кроме того, по мнению специалистов Центра имени Гамалеи, сейчас важным является индийский штамм коронавируса. По отношению к нему активность сывороток у вакцинированных и переболевших Covid-19 снижена в 2-3 раза.

24 мая
23 минуты
Ольга Иванова

«Сексуальную революцию совершили задние сиденья автомобилей», – заявил в свое время американский общественный деятель Джерри Рубин. И ошибся. Раскрепощение нравов происходило задолго до появления машин, причем много раз. Оно напоминает движение маятника. Как и почему вершились «секшал революшнс» и стоим ли мы на пороге нового витка сексуальности или же нас ждет ужесточение морали? Об этом – в нашем материале.

9 июня
4 минуты
Ольга Иванова

Международная команда исследователей изучила геологию и условия существования самого большого моря в истории планеты — Паратетиса.

27 мая
51 минута
Александр Березин

Хотя в прессе много пишут об исключительно редких «побочках» от вакцин, практика показывает, что бояться надо совсем другого. Самым страшным врагом привитого остается... коронавирус. Даже после вакцин Pfizer или Moderna от него иногда умирают — и подобных случаев уже сотни. Разумеется, среди непривитых таких на порядки больше, но погибшим и членам их семей от этого не легче. Еще хуже то, что две из трех российских вакцин, похоже, защищают от ковида намного слабее Pfizer и Moderna. Это довольно странно с учетом того, что третий российский препарат в этом плане не уступает западным аналогам. Почему российские власти финансируют миллионные тиражи слабой вакцины, имея в распоряжении вполне полноценную?

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: