#графен

13.11.2020
Денис Гордеев
4 418

Результаты открытия впоследствии можно применить при создании электронных устройств и аппаратуры, устойчивых к сильным магнитным полям.

05.11.2020
Сергей Васильев
5 014

Новая технология осаждения позволила получить лес углеродных нанотрубок рекордной длины — до 14 сантиметров.

29.10.2020
ФизТех
3 786

Физики из МФТИ и Владимирского государственного университета сумели повысить эффективность передачи энергии света в колебания на поверхности графена почти до 90 процентов. Для этого они использовали энергетическую схему преобразования, наподобие лазерной, и коллективные резонансные эффекты. Одно из возможных направлений, в которых может быть полезен эксперимент, - создание преобразователей световой энергии вроде солнечных батарей, только с гораздо большей эффективностью.

01.10.2020
ФизТех
894

Физики из МФТИ создали широкополосный чувствительный к поляризации детектор терагерцового излучения на основе графена. Разработка может найти применение в системах связи и передачи информации нового поколения, а также системах безопасности и медицине.

17.09.2020
НИТУ МИСИС
1 105

Коллектив ученых НИТУ «МИСиС» выяснил, что если в двухслойном графене искусственно создать «отверстие», например, выжечь его лазером, то атомы углерода на границах перераспределятся и образуют соединения между слоями, формируя непрерывную поверхность. Так, несмотря на дефект, электронные свойства материала не только не становятся хуже, но и в ряде случаев улучшаются.

15.09.2020
ЮФУ
733

Международная группа ученых, в состав которой вошел специалист из Южного федерального университета, разработала «атлас оптических переходов» для структурной идентификации графеновых нанолент. Атлас открывает путь для быстрой структурной характеризации нанолент с зигзагообразными краями, что можно назвать важным этапом для их контролируемого синтеза, а также последующего полномасштабного внедрения в промышленность, например, в устройствах оптоэлектроники, фотоники и спинтроники.

30.06.2020
Сколтех
1 144

Ученые Сколтеха в сотрудничестве с российскими и финскими коллегами нашли новый, бесконтактный способ измерения толщины пленок однослойных углеродных нанотрубок, имеющий перспективы применения в самых разных областях – от солнечной энергетики до умной ткани.

09.06.2020
ФизТех
1 474

Исследователи из лаборатории нанооптики и плазмоники МФТИ и научных центров Испании предложили методику изучения свойств единичных органических молекул и нанометровых молекулярных слоев, основанную на применении клиновидных структур из графена и металлической пленки.

25.05.2020
Сколтех
2 117

Ученые Сколтеха и МФТИ предсказали и экспериментально подтвердили возможность существования на поверхности алмаза тонкой пленки хлорида натрия (NaCl) с необычной гексагональной структурой. Она может служить диэлектриком, отделяющим затвор от канала в полевых транзисторах на алмазе, которые могут применяться, в частности, в электромобилях и телекоммуникационном оборудовании.

29.04.2020
ФизТех
1 508

Ученые из лаборатории суперкомпьютерных методов в физике конденсированного состояния МФТИ, Сколтеха и Объединенного института высоких температур РАН теоретически исследовали влияние дефектов в графене на перенос электронов на границе фаз графен-раствор. Расчеты показывают, что создание дефектов способно увеличить скорость переноса заряда на порядок. Причем варьируя тип дефекта можно селективно катализировать перенос электрона на определенный класс реагентов в растворе. Это свойство может очень пригодиться при создании чувствительных электрохимических сенсоров и электрокатализаторов.

14.04.2020
Сколтех
1 579

Ученые из Сколтеха смоделировали поведение нанопузырьков в ван-дер-ваальсовых гетероструктурах и поведение захваченных ими веществ. Новая модель в перспективе позволит получать уравнения состояния вещества в условиях нанообъемов, что открывает возможности для извлечения углеводородов из пород с большим содержанием микро- и нанопор.

23.03.2020
ФизТех
1 890

Ученые из МФТИ совместно с коллегами из Японии и США рассчитали параметры фотоприемников из слоев графена и смеси черных фосфора и мышьяка. Такие сенсоры способны улавливать излучение с энергией меньше запрещенной зоны этих слоев без графена. Также их легко модифицировать для увеличения чувствительности к нужной длине волны света. Подобные сенсоры могут заменить любые приемники дальнего инфракрасного и терагерцового излучения.

21.01.2020
НИТУ МИСИС
18 986

Международная группа ученых НИТУ «МИСиС» и Национального института квантовых наук и радиологии (Япония) разработала материал, который позволит существенно увеличить плотность записываемой информации в устройствах хранения данных, таких как твердотельные диски и флеш-накопители.

18.12.2019
ФизТех
19 127

Ученые из Московского физико-технического института и Института физики высоких давлений имени Верещагина РАН с помощью компьютерного моделирования уточнили кривую плавления графита, изучение которой длится более ста лет и пестрит противоречивыми данными. Также они показали, что «плавление» графена на самом деле является возгонкой.

18.12.2019
ТюмГУ
14 441

Сотрудники кафедры прикладной и технической физики ТюмГУ получили волнообразную структуру графеновых наночастиц.

16.08.2019
Сергей Васильев
17 795

Число известных модификаций углерода снова выросло: ученые смогли получить из него стабильные кольца, содержащие сразу 18 ковалентно связанных атомов.

13.05.2019
ФизТех
19 777

Ученые из МФТИ на примере золота продемонстрировали, как можно получить квазидвумерные материалы из не относящихся к классу двумерных. Двумерные металлы приближают нас и к появлению нового класса оптических метаматериалов, и самых неожиданных технологий.

14.03.2019
Редакция Naked Science
11 196

Ученые изолировали графен — прозрачный слой углерода толщиной всего в один атом — еще в 2004 году. Почти сразу появились новости обо всех чудесных свойствах материала, который может преобразовать наш мир, однако до недавнего времени заметного прорыва в этой области так и не было.

20.12.2018
ФизТех
565

Коллектив ученых из России, Англии, Японии и Италии создал терагерцевый детектор на основе графена.

Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно