• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.06.2020, 12:05
ФизТех
15,9 тыс

Изготовлена суперлинза, потенциально способная обойти законы классической оптики

❋ 5.9

Российские и датские ученые впервые наблюдали в эксперименте плазмонную нанострую. Это явление позволяет сфокусировать свет на наномасштабе и в теории — обойти одно из фундаментальных ограничений обычной собирающей линзы. Подобное уплотнение световых волн необходимо, чтобы использовать их в качестве переносчика сигналов в компактных устройствах, которые будут работать быстрее электроники.

Суперлинза / ©Дарья Сокол / Пресс-служба МФТИ / Автор: Ptolemocratia Acerronius

Статья опубликована в журнале Optics Letters. До изобретения лазерной указки герои любовных романов сообщали о своем присутствии, бросая камешек в окно. Один из недостатков камня как носителя сигнала — его масса, из-за которой отправка сообщения требует усилий и времени. Масса электрона мала, но тоже не равна нулю, поэтому и его нельзя мгновенно привести в движение. Если бы вместо электронов микросхемы оперировали фотонами — частицами света, техника работала бы намного быстрее.

Сегодня не представляется возможным заменить электронный микрочип фотонным аналогом, потому что такое устройство будет иметь огромные размеры. Миниатюризация потребует управления фотонами на столь маленьких масштабах, что световую волну придется локализовать в минимальном объеме. В идеале нужно собрать свет в пятно размером менее 50 процентов длины волны, что невозможно сделать обычной линзой, — это фундаментальное ограничение называется дифракционным пределом.

Ученые из России и Дании сконструировали фокусирующий элемент, который способен превратить свет в особый вид электромагнитных волн со сжатием до 60 процентов длины исходного излучения и потенциалом преодолеть дифракционный предел. Изготовленная коллективом металинза представляет собой квадратный кусок диэлектрика размером 5 на 5 микрометров и толщиной 0,25 микрометра. Эта частица помещена на золотую пленку толщиной 0,1 микрометра, на обратной стороне которой нанесена рельефная решетка (рисунок 1).

Рисунок 1. Лазерный импульс, падающий на золотую пленку, преобразуется в поверхностные плазмоны-поляритоны — особые электромагнитные колебания, которые распространяются в плоскости металлической пленки и, проходя под квадратной диэлектрической частицей, фокусируются до 60 процентов исходной длины волны. Чем сильнее фокусировка, тем миниатюрнее может быть техника / ©Дарья Сокол / Пресс-служба МФТИ

При облучении такой системы лазером в плоскости раздела между золотом и диэлектриком возникает возмущение в виде так называемого поверхностного плазмона-поляритона. Оно представляет собой коллективное колебание электронов в металле (плазмон), согласованное с распространением по поверхности световой волны (поляритона). Ценность этого превращения в том, что поверхностные плазмоны-поляритоны поддаются субволновой фокусировке, то есть их можно локализовать сильнее, чем породивший их лазерный импульс.

«Один из механизмов субволновой фокусировки основан на явлении плазмонной наноструи, которое нам удалось впервые экспериментально зафиксировать», — рассказывает инициатор работы, профессор Томского политехнического университета Игорь Минин.

Замдиректора ИСВЧПЭ РАН и ведущий научный сотрудник лаборатории двумерных материалов и наноустройств МФТИ Дмитрий Пономарёв поясняет принцип уплотнения волн в суперлинзе: «Мы использовали компьютерное моделирование, чтобы подобрать подходящие размеры диэлектрической частицы и характеристики дифракционной решетки на золоте. В результате поверхностная плазмонная волна имеет разную фазовую скорость на краях и в центре диэлектрика, из-за чего фронт волны изгибается и формируется плазмонная наноструя — область высокой плотности плазмонов-поляритонов».

Один из авторов исследования, директор Центра фотоники и двумерных материалов МФТИ Валентин Волков, за ближнепольным микроскопом. Подобный инструмент использовался исследователями, чтобы впервые наблюдать плазмонную нанострую / ©Евгений Пелевин / Пресс-служба МФТИ

Таким образом можно сильно локализовать излучение и манипулировать «сжатым светом» на наномасштабе, а это — необходимое условие для интеграции на чипе фотонных и плазмонных устройств, которые будут работать значительно быстрее своих электронных аналогов.

Директор Центра фотоники и двумерных материалов МФТИ Валентин Волков добавил: «Экспериментальное наблюдение плазмонных струй стало возможным благодаря объединению усилий ученых нашего центра и коллег из Москвы, Томска и Копенгагена. Наше сотрудничество будет продолжено — в ближайшем будущем мы продемонстрируем другие интересные эффекты, связанные с образованием, распространением и применением плазмонных струй». 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
30 октября, 16:53
ФизТех

Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.

1 ноября, 08:50
Любовь С.

Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.

31 октября, 10:14
Юлия Трепалина

Эксперимент, устроенный в морском аквариуме в Лос-Анджелесе, продемонстрировал, что акулы и скаты, принадлежащие к пластиножаберным рыбам, могут обладать более высоким уровнем интеллекта. Значит, им необходима обогащенная среда обитания при содержании в неволе.

27 октября, 11:59
Юлия Трепалина

В последнее время отказ от глютена, или клейковины — белков, содержащихся в пшенице, ржи и ячмене, — превратился в модный тренд. В соцсетях и СМИ некоторые популярные блогеры и знаменитости преподносят безглютеновые диеты как секрет хороших самочувствия и внешности. Тем не менее обзор десятков научных работ показал, что у большинства людей, считающих себя чувствительными к глютену, причина негативной реакции часто кроется не в самой клейковине.

26 октября, 11:34
Evgenia Vavilova

Физики нашли способ использовать собственные электроны радия для считывания информации о ядре атома. Соединение радиоактивного элемента с фтором позволило электронам ненадолго проникать в ядро.

28 октября, 10:21
Илья Гриднев

Анализ астрономических фотопластинок середины XX века показал, что таинственные яркие точки на небе появлялись значительно чаще вблизи дат ядерных испытаний. Эти вспышки, зафиксированные еще до запуска первого спутника, также совпали с увеличением числа сообщений о неопознанных аномальных явлениях.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно