Самый большой научпоп канал
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
07.11.2024
НИУ ВШЭ
123

Анализ генетической информации поможет избежать осложнений после инфаркта

4.5

Исследователи из НИУ ВШЭ разработали модель машинного обучения, которая предсказывает риск развития осложнений у пациентов, перенесших инфаркт миокарда. В модели впервые учли генетические данные, что позволило точнее оценить риск долгосрочных осложнений.

Поперечный разрез, показывающий инфаркт передней стенки левого желудочка сердца / © Патрик Дж. Линч, en.wikipedia.org

Исследование опубликовано в журнале Frontiers in Medicine. Ишемическая болезнь сердца (ИБС) — состояние, при котором сердце не получает достаточно крови и кислорода из-за сужения или блокировки коронарных артерий. Обычно его провоцируют бляшки, образующиеся на стенках сосудов из жиров и холестерина. ИБС может проявляться как стенокардия (боль в груди), инфаркт миокарда (сердечный приступ) или в виде других осложнений.

По данным ВОЗ, ишемическая болезнь сердца — самая частая причина смертности в мире, на нее приходится 13 процентов смертей. Поэтому важно грамотно назначать лечение и снижать риски возникновения осложнений и рецидивов. Исследователи из НИУ ВШЭ построили модель, способную предсказывать вероятность развития осложнений после инфаркта миокарда.

Ученые проанализировали данные пациентов Сургутского окружного центра диагностики и сердечно-сосудистой хирургии, поступивших с инфарктом миокарда в период с 2015 по 2024 год. При поступлении в отделение неотложной помощи врачи-исследователи разъясняли пациентам положения исследования и получали их согласие на участие. Затем кардиологи оценивали состояние коронарных артерий, снабжающих сердце, и, исходя из оценки, проводили операции по восстановлению кровотока: баллонную ангиопластику и стентирование или аортокоронарное шунтирование. Пациентов лечили медикаментозно с помощью блокаторов РААС, бета-блокаторов, статинов и двойной антиагрегантной терапии. Данные фиксировались во внутрибольничных историях болезни. У каждого пациента врачи определяли стандартные клинические показатели: артериальное давление, индекс массы тела, уровень холестерина и глюкозы.

На лабораторном этапе врачи-исследователи выделяли ДНК из лейкоцитарных колец в собранных образцах крови, а затем замораживали при температуре –80 °C для будущего генетического тестирования. Генотип определяли по конкретной генетической вариации (полиморфизму) в гене VEGFR-2. Генетический маркер VEGFR-2 — элемент в системе сигналов организма, контролирующий рост новых кровеносных сосудов. Существуют три варианта генотипа — C/C, C/T и T/T, — отличающихся вариацией нуклеотидов ДНК цитозина (C) или тимина (T) в этом участке гена. Маркер давно известен, однако его влияние на прогноз осложнений после инфаркта миокарда исследовали впервые.

Авторы статьи рассмотрели влияние 39 факторов на прогноз рисков сердечной смерти, повторного острого коронарного синдрома, инсульта и необходимости повторной реваскуляризации — процедуры, помогающей восстановить кровоток в артериях. Чтобы выбрать эффективную модель, исследователи обучили и протестировали несколько алгоритмов машинного обучения: градиентный бустинг (CatBoost и LightGBM), случайный лес, логистическую регрессию и подход AutoML.

Наилучшую производительность показала модель CatBoost — алгоритм градиентного бустинга, оптимизированный для работы с данными, обозначающими категории или группы, а не числовые значения. Он строит прогнозы за счет последовательного создания и обучения «слабых» деревьев решений, где следующее дерево корректирует ошибки предыдущих. При построении деревьев алгоритм разделяет данные на две части: модель обучается на одной части данных, а ошибки рассчитываются на другой. Это снижает эффект переобучения, при котором модель просто запоминает правильные ответы и помогает найти общие закономерности для прогнозов в незнакомых случаях.

Влияние признаков на точность модели оценивали с помощью метода последовательного добавления признаков, который проверяет их вклад на каждом этапе. Ученые отобрали 9 наиболее значимых факторов: пол, индекс массы тела, индекс коморбидности Чарлсона, учитывающий наличие серьезных сопутствующих болезней, состояние боковой стенки левого желудочка, степень поражения ствола левой коронарной артерии, количество пораженных артерий, вариант гена VEGFR-2, выбор процедуры чрескожного коронарного вмешательства или аортокоронарного шунтирования, а также дозировка статинов.

Результаты показали, что доза статинов — лекарств, которые используются для снижения уровня холестерина в крови, — наиболее важный фактор, влияющий на риск развития осложнений. Высокие дозы статинов снижают этот риск, особенно у пациентов с неблагоприятным генотипом. Полиморфизм VEGFR-2, в частности наличие аллеля T, оказался на четвертом месте по важности.

«Ранее генетические факторы не использовались в моделях машинного обучения, в основном из-за того, что секвенирование или даже генотипирование отдельных нуклеотидов не проводится в больницах. Нам же, помимо стандартных показателей, были доступны данные о полиморфизме в гене VEGFR-2. Благодаря этому удалось сравнить этот показатель с другими и выяснить, что аллель риска варианта VEGFR-2 входит в пятерку наиболее важных факторов для прогнозирования долгосрочных результатов у пациентов с инфарктом миокарда», — объясняет один из авторов статьи, заведующая Международной лабораторией биоинформатики НИУ ВШЭ Мария Попцова.

Исследователи подчеркивают, что анализ генетических данных помогает в создании более точных и персонализированных моделей прогноза рисков сердечно-сосудистых осложнений у пациентов после инфаркта миокарда.

«Сердечно-сосудистые болезни требуют ресурсов для диагностики, лечения, реабилитации и профилактики и потому создают высокую нагрузку на систему здравоохранения. Внедрение подобных моделей в клиническую практику позволит снизить смертность и частоту повторных инфарктов, оптимизировать лечение и уменьшить нагрузку на врачей», — комментирует один из авторов статьи, стажер-исследователь Международной лаборатории биоинформатики Александр Кирдеев.

Исследование выполнено в рамках проекта НИУ ВШЭ «Зеркальные лаборатории».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 15:35
Александр Березин

В рамках новой модели вспышки сверхновых существенно нарушили парниковый эффект на нашей планете. Это должно приводить к похолоданиям и даже вымиранию отдельных видов.

Вчера, 11:04
Evgenia Vavilova

Ученые создали устройство, генерирующее случайные числа на основе поляризации запутанных фотонов. Каждый день они публикуют новые числа на общедоступном сервисе.

Позавчера, 21:01
Юлия Трепалина

Анализ более двух миллионов карт пациентов британских ветеринарных клиник показал, какие псы имеют повышенный риск острых кишечных расстройств — одной из распространенных проблем со здоровьем у четвероногих друзей человека.

9 июня
Александр Березин

2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.

9 июня
Адель Романенкова

Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.

10 июня
Редакция Naked Science

Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

26 мая
Unitsky String Technologies Inc.

Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно