• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
23.01.2017
ФизТех
256

Ученые разложили по полочкам двухслойный графен

«Графеновый бум» стартовал в 2004 году с выходом статьи Константина Новоселова и Андрея Гейма. На сегодняшний день графену посвящено более 10 тыс. публикаций и более тысячи патентов.

Ученые разложили по полочкам двухслойный графен
Ученые разложили по полочкам двухслойный графен / Автор: Sycophanta Duccius

Группа ученых из Института физико-химических исследований RIKEN (Япония), ИТПЭ РАНМФТИ, Всероссийского НИИ автоматики и Мичиганского университета (США) систематизировала информацию о двухслойном графене — перспективном для электроники и оптики материале. Статья опубликована в журнале Physics Reports.

Графеновый бум

Развитие микроэлектроники тесно связано с поиском новых материалов и принципов работы транзисторов. Особое внимание инженеров и ученых привлекает графен — материал, обладающий необычными механическими, электрическими и оптическими свойствами. «Графеновый бум» стартовал в 2004 году с выходом статьи Константина Новоселова и Андрея Гейма, опубликованной в журнале Science. На сегодняшний день графену посвящено более 10 тыс. публикаций и более тысячи патентов.

Одной из интересных модификаций графена является двухслойный графен. Он быстро набирает популярность. Только в 2014–2015 годах двухслойному графену было посвящено более тысячи статей. Разобраться в таком количестве экспериментальных фактов, теорий и гипотез непростая задача, помочь справиться с которой призваны обзорные статьи. Обзоры играют особую роль в научном процессе: в отличие от оригинальных работ, представляющих на суд общественности исследования отдельных авторов или авторских коллективов, обзорные статьи описывают состояние области в целом, выявляя актуальные тренды и задачи и предлагая ориентиры в море библиографии.

Изучение обзорных статей экономит ученым по всему миру огромное количество человеко-часов, ускоряя процесс передачи и восприятия научной информации, способствуя таким образом прогрессу науки. Это отмечает Александр Рожков, один из соавторов обзора, доктор физико-математических наук, ведущий научный сотрудник лаборатории № 1 Института теоретической и прикладной электродинамики РАН, сотрудник кафедры электродинамики сложных систем и нанофотоники МФТИ: «Для создания обзора по двухслойному графену авторский коллектив потратил два года, перебирая и систематизируя все самые существенные опубликованные результаты, как экспериментальные, так и теоретические.

Результатом этих усилий стала статья, цитирующая около 450 научных работ, посвященных как собственно двухслойному графену, так и вспомогательным темам. На текущий момент это наиболее полный обзор данной области и по объему процитированной литературы, и по охвату тематик».

Почему два лучше, чем один?

Одна из причин привлекательности графена — высокая подвижность носителей заряда, в десятки раз больше, чем у кремния — основного материала микроэлектроники. Электроны и дырки (места для электронов) в графене легко и быстро перемещаются под действием внешнего электрического поля. Но транзистор, построенный на однослойном графене, невозможно эффективно «закрыть». Это связано с тем, что у графена нет запрещенной зоны (запрещенных энергетических состояний для электронов), а значит, через него всегда будет течь ток.

two_layer_graphene_1.jpg
Рис. 1. Двухслойный графен. Тип AA — узлы кристаллической решетки слоев графена находятся точно друг под другом. Тип AB — второй слой графена развернут на 60° относительно первого.

Основным преимуществом двухслойного графена является возможность локально создавать запрещенную зону и управлять ее величиной, прикладывая разность потенциалов перпендикулярно слоям. Это значит, что на его основе может быть построено новое поколение транзисторов, обладающее лучшими быстродействием и энергоэффективностью, что особенно важно для создания портативных устройств, работающих на аккумуляторах. Кроме того, «настройка» запрещенной зоны расширяет возможности применения в оптоэлектронике и датчиках.

Но говорить о революции в микроэлектронике еще рано. Получить качественные образцы двухслойного графена намного сложнее, чем однослойного, при этом электрические свойства двухслойного графена (например, подвижность) существенно зависят от качества и точности совмещения слоев. Существует три основных типа: AA — узлы кристаллической решетки слоев графена находятся точно друг под другом, AB — второй слой графена развернут на 60° относительно первого (см. рис. 1) и подкрученный — слои повернуты на произвольный угол. И каждый из них обладает своими особенностями, которые необходимо изучить.

Графеновое будущее

К настоящему моменту научное сообщество уже «переварило» большое количество теоретических идей и концепций раннего этапа. Предсказания, сформулированные еще в дографеновую эпоху (80–90-е годы прошлого века), а также на начальных стадиях «графенового бума», были проверены экспериментально в последнее десятилетие благодаря бурному развитию графеновой экспериментальной науки. Сейчас графен ищет свое место в прикладных областях.

Новые задачи возникают и в фундаментальной (не имеющей непосредственного и очевидного прикладного значения) физике графеновых систем. Например, остается актуальным вопрос о влиянии межэлектронного отталкивания на свойства графеновых систем. В этой связи обсуждаются достаточно новые для физики твердого тела концепции, такие как маргинальная жидкость Ферми или топологически упорядоченные состояния.

Авторы статьи занимаются изучением двухслойного графена около шести лет. За это время они внесли свой вклад в понимание его электронной структуры. В частности, ими проведен анализ возможного спонтанного нарушения симметрии в графене типа AA (теоретически предсказано, что электронная подсистема в АА‑графене неустойчива), указана возможность возникновения антиферромагнетизма и пространственно-неоднородных состояний, а также исследовались одноэлектронные энергетические уровни подкрученного графена в зависимости от угла поворота и числа атомов в суперячейке (периодической структуре с большим количеством атомов, которая получается за счет небольшого поворота атомных плоскостей относительно друг друга, см. рис. 2).

Артем Сбойчаков, соавтор обзора, кандидат физико-математических наук, старший научный сотрудник лаборатории № 1 ИТПЭ РАН, прокомментировал: «Вообще системы с муаром, и подкрученный графен в частности, обладают весьма богатой физикой, прежде всего из-за их сложной структуры. При этом на сегодняшний день некоторые моменты, например эффекты электрон-электронного взаимодействия, остаются непроработанными. Поэтому в ближайшее время можно ожидать много интересных открытий в этой области исследований».

two_layer_graphene_2.jpg
Рис. 2. Третий тип двухслойного графена — подкрученный. Белым цветом выделены границы суперячеек (ячеек муара)

В свою очередь, Александр Рахманов, соавтор обзора, профессор МФТИ, доктор физико-математических наук, заведующий лабораторией № 1 ИТПЭ РАН, отметил: «Резюмируя как собственный опыт исследовательской работы, так и впечатления, полученные в процессе работы над обзором, можно предполагать, что графен и системы на его основе будут оставаться источником научного вдохновения для многих исследователей: и теоретиков, и экспериментаторов — на годы вперед».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
21 ноября
Елизавета Александрова

До сих пор нашу Галактику считали типичным примером того, как все устроено в любых спиральных галактиках. Но недавно астрономы рассмотрели сотню максимально похожих аналогов Млечного Пути и обнаружили, что большинство из них все же заметно отличаются.

Позавчера, 10:30
НовГУ

В этой посуде можно готовить растворы с ионами серебра и меди, которые обладают мощным антимикробным, противовирусным и иммуностимулирующим действием. Это поможет в профилактике и лечении инфекционных и вирусных заболеваний (в том числе ОРВИ, гриппа, коронавируса), повысит иммунитет населения и предотвратит эпидемии.

21 ноября
Дарья Г.

Бурная эволюция массивных звезд играет большую роль во Вселенной. Именно они ионизируют межзвездный газ и, взрываясь сверхновыми, насыщают космос более тяжелыми элементами. Поэтому ученые так заинтересованы в их изучении. И вот астрономам впервые удалось получить снимок ближайших окрестностей красного сверхгиганта вне Млечного Пути.

18 ноября
Юлия Трепалина

Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.

19 ноября
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

17 ноября
Юлия Позднякова

Евгений Левичев с командой коллег работает над созданием источника синхротронного излучения — по сути большого рентгеновского «микроскопа», с помощью которого геологи, биологи, химики и другие специалисты смогут получить новую и полезную информацию. Задача у Евгения Борисовича непростая — сделать установку с рекордными параметрами: придумать оригинальные технические решения, смоделировать процесс и настроить все наилучшим образом. Член-корреспондент РАН Евгений Борисович Левичев — директор Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ») и заместитель директора Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН).

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно