24.01.2019
Сколтех

Ученые предложили эффективный способ прогнозирования токсичности потенциальных лекарственных препаратов

Ученые из Сколтеха (CDISE, группа Максима Федорова) и Мюнхенского центра имени Гельмгольца по исследованию окружающей среды и здоровья (HMGU, группа Игоря Тетко) создали технологию улучшенного прогноза токсичности потенциальных лекарственных препаратов на основе использования алгоритмов многозадачного машинного обучения и анализа различных видов данных по токсичности. Этот подход позволяет получить точные прогнозы нежелательных эффектов лекарственных соединений. Результаты...

©Wikipedia

Ученые из Сколтеха (CDISE, группа Максима Федорова) и Мюнхенского центра имени Гельмгольца по исследованию окружающей среды и здоровья (HMGU, группа Игоря Тетко) создали технологию улучшенного прогноза токсичности потенциальных лекарственных препаратов на основе использования алгоритмов многозадачного машинного обучения и анализа различных видов данных по токсичности.

Этот подход позволяет получить точные прогнозы нежелательных эффектов лекарственных соединений. Результаты исследования опубликованы в журнале Journal of Chemical Information and Modeling.

Новое лекарство, выводимое на рынок, должно быть не только эффективным, но и безопасным. Тестам на безопасность посвящена первая фаза клинических испытаний любого нового лекарственного препарата.

По данным организации FDA (Food and Drug Administration), осуществляющей надзор за безопасностью продуктов питания и лекарств в США, около 30% потенциальных лекарств отсеиваются именно на этой стадии, когда фармацевтические компании и ученые уже вложили в них десятки миллионов долларов и тысячи рабочих часов.

Чтобы этого избежать, необходимо разрабатывать эффективные алгоритмы, которые помогут распознать токсичные соединения на самой ранней стадии разработки нового препарата.

Универсального понятия токсичности не существует. Этот параметр может быть измерен на различных организмах (например, на мышах, крысах, обезьянах); оценка токсичности также зависит от способа введения препарата (с пищей, инъекционно, накожно).

Авторы работы создали нейронную сеть, которая прогнозирует несколько различных видов токсичности одновременно.

Для обучения модели использовались данные о токсичности более 70 тысяч органических соединений различной природы; эти данные были распределены по 29 типам, учитывающим как вид испытуемого животного, так и тип введения исследуемого вещества.

Ученые сравнили свою модель с моделями, прогнозирующими только один тип токсичности и продемонстрировали, что одновременное использование многих видов токсичности при обучении значительно улучшает итоговое качество прогнозирования.

Для наблюдаемого явления можно найти простые аналогии. Одновременное изучение смежных дисциплин, например математики и физики, поможет ученику лучше понимать каждое из них и упростит процесс обучения.

Авторы полагают, что различные виды токсичности также связаны между собой — и это помогает нейронной сети выстраивать более точные закономерности.

«Далеко не всегда многозадачное обучение дает хороший результат, однако в нашем случае оно значительно улучшает качество прогнозирования. Наша работа не только демонстрирует эффективность нового подхода, но и способствует пересмотру устаревших методов вычислительного прогнозирования токсичности», — рассказывает первый автор опубликованной работы, аспирант Сколтеха Сергей Соснин.

Авторы работы сделали созданные модели доступными онлайн. Теперь любой химик-исследователь может заранее оценить токсичность потенциальных кандидатов в лекарственные средства по отношению к нескольким видам животных.

Машинное обучение и анализ больших данных уже совершили революцию во многих областях науки и теперь очередь за токсикологией.

В будущем ученые хотят научиться делать точные прогнозы токсичности для человека, что сделает процесс разработки новых лекарств дешевле и продуктивнее.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Вчера, 14:06
Мария Азарова

Американские исследователи оценили вероятность повторного заражения коронавирусами SARS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63 и особенно SARS-CoV- 2.

2 часа назад
Мария Азарова

По мнению японских ученых, гиперинсулинемию и связанную с ней сверхэкспрессию белка GRP78 следует рассматривать как терапевтическую или профилактическую цели в свете пандемии коронавируса.

Вчера, 17:59
Мария Азарова

В Великобритании провели крупное популяционное исследование с участием более 32 миллионов человек. Авторы работы изучили неврологические осложнения, связанные с вакцинами ChAdOx1nCoV-19 и BNT162b2, а также после самого Covid-19.

Вчера, 14:06
Мария Азарова

Американские исследователи оценили вероятность повторного заражения коронавирусами SARS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63 и особенно SARS-CoV- 2.

22 октября
Ольга Иванова

Американские исследователи пришли к выводу, что человеческий мозг уменьшился из-за процессов глобализации, кооперации и разделения труда.

22 октября
Александр Березин

Повелители тундростепей Евразийского континента, оказывается, вовсе не вымерли с концом ледникового периода. Вопреки тому, что считалось ранее, они выжили — как минимум на Таймыре и как минимум до 1900 года до нашей эры. А это на много веков позже постройки пирамиды Хеопса. Получается, человек не привел мамонта к вымиранию? Или, напротив, нашел затерянные на Таймыре остатки вида и уничтожил их совсем недавно? Это сложный вопрос, от которого зависит ответ на другой: могут ли слоны заселить Север России и в наши дни?

13 октября
Мария Азарова

Анализ образцов крови, взятых у российских космонавтов до и после их полета на МКС, показал, что длительное пребывание в космосе может провоцировать повреждение мозга.

12 октября
Алиса Гаджиева

Две тысячи лет назад многие сооружения строили лучше, чем сегодня.

27 сентября
Мария Азарова

Новое исследование генетиков из Германии и Италии, похоже, помогло найти ответ на вопрос, который занимал ученых свыше двух тысяч лет: откуда взялись этруски?

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: