Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые обучили нейронную сеть прогнозировать дебит горизонтальных скважин
Сегодня широко развивается технология горизонтального бурения скважин (когда их прокладывают с отклонением от вертикальной оси не менее чем на 80 градусов). Благодаря такой технологии нефть добывается с большей результативностью, чем при использовании обычных вертикальных скважин. Этот метод позволяет охватывать и разрабатывать обширные залежи углеводородов с использованием только одной скважины. Но существующие технологии, основанные на аналитических уравнениях, слишком ненадежны для расчета и прогноза дебита горизонтальных скважин (объема продукции, добываемой из скважины за единицу времени). Неточный расчет дебита негативно влияет на эффективность добычи нефти. Финансовые, человеческие и технологические ресурсы могут быть потрачены впустую – на скважину, которая не окупит затрат. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили принципиально новый подход, основанный на методах машинного обучения.
Исследование опубликовано в журнале SOCAR Proceedings, Special Issue. С 1950-х годов множество ученых представили свои математические модели расчета дебита горизонтальной скважины. Однако, как выяснили ученые Пермского Политеха, значение дебита, рассчитанное при помощи данных методов, может отличаться от фактического на 40-80 процентов.
Методы математического моделирования похожи на конструктор «Лего», в котором вместо деталей – данные о геолого-физических условиях эксплуатации скважины и математические формулы, на основе которых определяется дебит. Однако в нашем случае проблема кроется в наличии множества допущений: неоднородности пласта, конструкции скважины, закона фильтрации флюида (жидкости, которая встречается в порах горной породы), фильтрационных сопротивлений, реологии флюидов и их свойств. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили использовать методы машинного обучения.
Первым этапом построения моделей машинного обучения стали сбор и подготовка, предобработка и структуризация цифрового массива информации. Для анализа ученые сформировали базу данных по 178 горизонтальным скважинам 31 нефтяного месторождения: геолого-физические характеристики пластов, исходные данные для гидродинамических исследований скважин, конструктивные особенности скважин (диаметр ствола, длина участка по стволу) и информацию об их методе освоения.
Для прогнозирования использовался многомерный регрессионный анализ – набор статистических методов оценки связей между зависимой переменной и одной/несколькими независимыми переменными. Дебит выступал в качестве зависимого признака, а геолого-технологические параметры (коэффициенты нефтенасыщенности, песчанистости, вытеснения и пористости, диаметр ствола скважины, проницаемости, вязкости нефти) – в качестве независимых факторов. Затем, для достижения максимальной точности прогнозирования и оперативности расчетов, ученые обратились к использованию нейронных сетей.
«В качестве модели использовалась полносвязная нейронная сеть прямого распространения. Преимуществом данного вида нейросети является ее универсальность и возможность адаптироваться к любым входным данным, выделяя при этом важные признаки и игнорируя незначительные. Разработанная модель доказала свою эффективность. Коэффициент детерминации составил более 0,8, что выше значения, полученного по аналитическим формулам на 50-90 процентов», – подводит итог кандидат технических наук, доцент кафедры «Нефтегазовые технологии» Пермского Политеха Дмитрий Мартюшев.
Преимуществом разработанной учеными ПНИПУ модели является использование уже накопленного опыта бурения и формирование обобщенных закономерностей прогнозирования дебита горизонтальных скважин. С расширением базы данных эксплуатации горизонтальных скважин в различных геолого-физических условиях предложенный метод может стать еще точнее.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Международная команда исследователей с участием ученых из НИУ ВШЭ экспериментально показала, что люди, страдающие биполярным расстройством, считают мир более нестабильным, чем он есть на самом деле, и из-за этого чаще принимают нерациональные решения. Ученые предполагают, что полученные результаты позволят в будущем разработать более точные методы диагностики и терапии биполярного аффективного расстройства.
Просмотры вакансий и подача заявлений о поиске нового места работы резко активизировались в среде американских ученых, причем они ищут места вне Штатов. Происходящее связано даже не столько с сокращением финансирования науки новой администрацией, сколько с неуверенностью в том, что того или иного исследователя сокращения не коснутся в будущем.
Изучив поведение 69 видов птиц в разных областях Западных Гат (Индия), международная исследовательская группа наконец объяснила, почему территориальные и всеядные птицы чаще других поют по утрам.
Наблюдая ранние этапы рождения землеподобных миров, астрономы приблизились к решению «метрового барьера» — проблемы роста пылевых зерен до размеров, необходимых для формирования планет.
Среди ныне живущих морских обитателей осталось всего несколько так называемых «живых» ископаемых вроде латимерии или мечехвоста. Остальных мы знаем по уцелевшим остаткам. Новый вид древней рыбы обнаружили палеонтологи в девонском песчанике Канадской Арктики. Судя по найденным зубам и челюстям, рыба была в разы меньше своих родственников, а значит, могла жить в реках, что необычно для этих существ.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии