Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые обучили нейронную сеть прогнозировать дебит горизонтальных скважин
Сегодня широко развивается технология горизонтального бурения скважин (когда их прокладывают с отклонением от вертикальной оси не менее чем на 80 градусов). Благодаря такой технологии нефть добывается с большей результативностью, чем при использовании обычных вертикальных скважин. Этот метод позволяет охватывать и разрабатывать обширные залежи углеводородов с использованием только одной скважины. Но существующие технологии, основанные на аналитических уравнениях, слишком ненадежны для расчета и прогноза дебита горизонтальных скважин (объема продукции, добываемой из скважины за единицу времени). Неточный расчет дебита негативно влияет на эффективность добычи нефти. Финансовые, человеческие и технологические ресурсы могут быть потрачены впустую – на скважину, которая не окупит затрат. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили принципиально новый подход, основанный на методах машинного обучения.
Исследование опубликовано в журнале SOCAR Proceedings, Special Issue. С 1950-х годов множество ученых представили свои математические модели расчета дебита горизонтальной скважины. Однако, как выяснили ученые Пермского Политеха, значение дебита, рассчитанное при помощи данных методов, может отличаться от фактического на 40-80 процентов.
Методы математического моделирования похожи на конструктор «Лего», в котором вместо деталей – данные о геолого-физических условиях эксплуатации скважины и математические формулы, на основе которых определяется дебит. Однако в нашем случае проблема кроется в наличии множества допущений: неоднородности пласта, конструкции скважины, закона фильтрации флюида (жидкости, которая встречается в порах горной породы), фильтрационных сопротивлений, реологии флюидов и их свойств. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили использовать методы машинного обучения.
Первым этапом построения моделей машинного обучения стали сбор и подготовка, предобработка и структуризация цифрового массива информации. Для анализа ученые сформировали базу данных по 178 горизонтальным скважинам 31 нефтяного месторождения: геолого-физические характеристики пластов, исходные данные для гидродинамических исследований скважин, конструктивные особенности скважин (диаметр ствола, длина участка по стволу) и информацию об их методе освоения.
Для прогнозирования использовался многомерный регрессионный анализ – набор статистических методов оценки связей между зависимой переменной и одной/несколькими независимыми переменными. Дебит выступал в качестве зависимого признака, а геолого-технологические параметры (коэффициенты нефтенасыщенности, песчанистости, вытеснения и пористости, диаметр ствола скважины, проницаемости, вязкости нефти) – в качестве независимых факторов. Затем, для достижения максимальной точности прогнозирования и оперативности расчетов, ученые обратились к использованию нейронных сетей.
«В качестве модели использовалась полносвязная нейронная сеть прямого распространения. Преимуществом данного вида нейросети является ее универсальность и возможность адаптироваться к любым входным данным, выделяя при этом важные признаки и игнорируя незначительные. Разработанная модель доказала свою эффективность. Коэффициент детерминации составил более 0,8, что выше значения, полученного по аналитическим формулам на 50-90 процентов», – подводит итог кандидат технических наук, доцент кафедры «Нефтегазовые технологии» Пермского Политеха Дмитрий Мартюшев.
Преимуществом разработанной учеными ПНИПУ модели является использование уже накопленного опыта бурения и формирование обобщенных закономерностей прогнозирования дебита горизонтальных скважин. С расширением базы данных эксплуатации горизонтальных скважин в различных геолого-физических условиях предложенный метод может стать еще точнее.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.
Ученые из МФТИ, НИУ ВШЭ и ОИВТ РАН показали, что жидкость может перейти в стеклообразное состояние под действием давления. Эта работа не только раскрывает механизм перехода, заполняя пробелы в фундаментальных вопросах физики, но и предлагает подход, с высокой точностью моделирующий поведение материалов в экстремальных условиях.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Специалисты УКБ №1 имени С.Р. Миротворцева СГМУ имени В.И. Разумовского провели успешное эндоскопическое удаление крупного кровоточащего новообразования толстой кишки у ребенка без разреза, через просвет кишки.
Ученые РГУ нефти и газа (НИУ) имени И. М. Губкина и Института проблем управления имени В.А. Трапезникова РАН (ИПУ РАН) создали технологию экспресс-анализа качества природного газа. Впервые для этих целей была разработана нейросеть, что позволило определить показатели качества пробы в режиме реального времени за несколько секунд вместо 20-40 минут традиционным способом — с помощью газовой хроматографии.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно