Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые обучили нейронную сеть прогнозировать дебит горизонтальных скважин
Сегодня широко развивается технология горизонтального бурения скважин (когда их прокладывают с отклонением от вертикальной оси не менее чем на 80 градусов). Благодаря такой технологии нефть добывается с большей результативностью, чем при использовании обычных вертикальных скважин. Этот метод позволяет охватывать и разрабатывать обширные залежи углеводородов с использованием только одной скважины. Но существующие технологии, основанные на аналитических уравнениях, слишком ненадежны для расчета и прогноза дебита горизонтальных скважин (объема продукции, добываемой из скважины за единицу времени). Неточный расчет дебита негативно влияет на эффективность добычи нефти. Финансовые, человеческие и технологические ресурсы могут быть потрачены впустую – на скважину, которая не окупит затрат. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили принципиально новый подход, основанный на методах машинного обучения.
Исследование опубликовано в журнале SOCAR Proceedings, Special Issue. С 1950-х годов множество ученых представили свои математические модели расчета дебита горизонтальной скважины. Однако, как выяснили ученые Пермского Политеха, значение дебита, рассчитанное при помощи данных методов, может отличаться от фактического на 40-80 процентов.
Методы математического моделирования похожи на конструктор «Лего», в котором вместо деталей – данные о геолого-физических условиях эксплуатации скважины и математические формулы, на основе которых определяется дебит. Однако в нашем случае проблема кроется в наличии множества допущений: неоднородности пласта, конструкции скважины, закона фильтрации флюида (жидкости, которая встречается в порах горной породы), фильтрационных сопротивлений, реологии флюидов и их свойств. Чтобы повысить точность прогнозирования дебита горизонтальных скважин, ученые Пермского Политеха предложили использовать методы машинного обучения.
Первым этапом построения моделей машинного обучения стали сбор и подготовка, предобработка и структуризация цифрового массива информации. Для анализа ученые сформировали базу данных по 178 горизонтальным скважинам 31 нефтяного месторождения: геолого-физические характеристики пластов, исходные данные для гидродинамических исследований скважин, конструктивные особенности скважин (диаметр ствола, длина участка по стволу) и информацию об их методе освоения.
Для прогнозирования использовался многомерный регрессионный анализ – набор статистических методов оценки связей между зависимой переменной и одной/несколькими независимыми переменными. Дебит выступал в качестве зависимого признака, а геолого-технологические параметры (коэффициенты нефтенасыщенности, песчанистости, вытеснения и пористости, диаметр ствола скважины, проницаемости, вязкости нефти) – в качестве независимых факторов. Затем, для достижения максимальной точности прогнозирования и оперативности расчетов, ученые обратились к использованию нейронных сетей.
«В качестве модели использовалась полносвязная нейронная сеть прямого распространения. Преимуществом данного вида нейросети является ее универсальность и возможность адаптироваться к любым входным данным, выделяя при этом важные признаки и игнорируя незначительные. Разработанная модель доказала свою эффективность. Коэффициент детерминации составил более 0,8, что выше значения, полученного по аналитическим формулам на 50-90 процентов», – подводит итог кандидат технических наук, доцент кафедры «Нефтегазовые технологии» Пермского Политеха Дмитрий Мартюшев.
Преимуществом разработанной учеными ПНИПУ модели является использование уже накопленного опыта бурения и формирование обобщенных закономерностей прогнозирования дебита горизонтальных скважин. С расширением базы данных эксплуатации горизонтальных скважин в различных геолого-физических условиях предложенный метод может стать еще точнее.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии