Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#языковая модель
Международный коллектив ученых из Сколковского института науки и технологий, МФТИ, Института исследований искусственного интеллекта (AIRI) и Университета Париж-Сите разработал новый, элегантный метод для проверки логических способностей больших языковых моделей (LLM). Вместо того чтобы судить о правильности рассуждений нейросети лишь по ее финальному ответу, исследователи научились заглядывать внутрь ее механизма «внимания» и находить там скрытые паттерны, отвечающие за проверку логики. Этот подход, названный QK-score, позволяет с высокой точностью определять, следует ли модель законам логики на каждом шаге своих рассуждений, делая ее работу более прозрачной и надежной.
Тематические модели — алгоритмы машинного обучения, способные сортировать большие объемы текстов по темам. Исследователи из НИУ ВШЭ в Санкт-Петербурге сравнили пять тематических моделей и определили, какие из них работают лучше. Наименьшее число ошибок показали две модели, одна из которых, GLDAW, — разработка Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии