Рубрика Технологии

Ученые создали персональный пищевой компьютер

Специалисты из Массачусетского технологического института разработали систему автоматического выращивания растений на основе машинного обучения.

Выращивание сельскохозяйственных культур на открытых пространствах может осложняться глобальными изменениями климата и инвазивными видами, в том числе активностью насекомых-вредителей. Одним из методов повышения устойчивости растений служит селекция путем генетических модификаций. Однако это требует полной расшифровки генома и является трудоемким. В качестве альтернативы выступает внедрение теплиц, позволяющих увеличить объем продукта при снижении занимаемой земли, в частности вертикальных ферм. В этом случае посадка семян осуществляется в специальном многоэтажном помещении, при этом солнечный свет нередко заменяется искусственным, что ускоряет рост.

 

Иная концепция заключается в построении систем с контролируемым выращиванием. По этой схеме реализован персональный пищевой компьютер (Personal Food Computer) OpenAg, прототип которого американские инженеры представили в 2015 году. Первоначально он включал себя металлический контейнер, механические и электронные компоненты которого — насосы для подачи удобрений и воды, светодиоды, датчики — обеспечивали тонкую настройку внутреннего климата. Кроме того, разработчики сконструировали более массивную и сегментированную версию системы, Food Server, — в каждой ячейке поддерживались разные условия, а каркасом для нее служил грузовой контейнер.

 

Конструкция прототипа предполагала ручную настройку параметров. Но в 2016 году авторы начали сотрудничество с американской компанией Sentient Technologies, которая занимается разработками в области машинного обучения. Участники проекта интегрировали алгоритмы машинного зрения с OpenAg, что позволило автоматизировать процессы выращивания. В зависимости от целей, новая система параллельно анализировала состояние саженцев в нескольких сегментах и при необходимости корректировала климатические условия. В будущем такая теплица может значительно упростить промышленное культивирование растений, например, выращивание «мексиканского» авокадо вне тропических регионов.

 

Также ученым удалось оптимизировать компьютерный алгоритм для получения растений с заданными свойствами. В частности, систему обучили варьировать уровень определенных ароматических соединений в базилике (Ócimum) — травы этого рода являются одними из наиболее быстрорастущих, что облегчает проверку гипотез, а также широко применяются в пищевой промышленности. Испытания показали, что в перспективе при непрерывной работе машина могла увеличить долю таких веществ в двух образцах на 674–895 процентных пунктов. Примечательно, что алгоритм также освоил культивирование с учетом принципа массы-вкуса — отрицательной корреляции между этими параметрами.

 

Отмечается, что, в отличие от аналогов, сборка представленной системы может осуществляться самостоятельно: алгоритм имеет открытый исходный код, а инструкции опубликованы на GitHub и странице проекта.

 

Об испытаниях персонального пищевого компьютера пишет Fast Company.

 

Ранее похожую систему показали канадские исследователи. «Умная» теплица является портативной и имеет только одну секцию.

 

Пример работы машинного зрения в OpenAg / ©Open Agriculture Initiative