Наука

Ученые выяснили, как ионные жидкости проводят электрический ток

Международная группа ученых, в состав которой входит ученый Сколтеха, выяснила как ионные жидкости проводят электрический ток. Понимание этих процессов открывает возможности широкого использования таких жидкостей в разных устройствах: от суперконденсаторов до топливных элементов и батарей

Результаты исследования опубликованы в журнале Physical review X.

Ионные жидкости представляют собой жидкие соли. В то время как обычные жидкости, например вода или бензин, состоят из электрически нейтральных молекул, частицы ионных жидкостей несут электрические заряды. Неорганические соли, такие, как, поваренная соль — это кристаллы, которые превращаются в жидкость только при очень высоких температурах. Если же молекулы соли — органические, их температура плавления невысока и они оказываются жидкими уже при комнатных температурах. Поэтому их называют «ионными жидкостями комнатной температуры».

Ионные жидкости комнатной температуры обладают многими удивительными свойствами: они могут проводить электрический ток, подобно ртути или электролитам. В то же время, они не токсичны, не такие тяжелые, как ртуть, не летучие, как обычные электролиты, и могут выдерживать очень высокое электрическое напряжение. Также они химически устойчивы при высоких температурах, а их ионы практически не участвуют в электрохимических реакциях.

Их легко смешивать друг с другом для использования полученных «коктейлей» как специальных растворителей. Это приводит к практически неограниченному числу разнообразных растворителей с необходимыми качествами. Все эти свойства ионных жидкостей делают их весьма перспективными для применения в энергетике в самых различных устройствах: от суперконденсаторов до топливных элементов и батарей.

Последние могут быть весьма эффективными, экономичными, экологичными и мощными, что особенно важно, например, для робототехники. Используя футуристический жаргон, можно предположить, что описанные ионные жидкости могут в будущем стать «кровью роботов». Помимо этого, такие соединения могут также использоваться в гидравлических приводах.

Физический механизм электропроводности ионных жидкостей комнатной температуры был предметом споров с самого момента их открытия. Ситуация выглядит действительно противоречивой: с одной стороны, ионные жидкости состоят из заряженных частиц (ионов), которые являются непосредственными носителями заряда. Их концентрация в такой жидкости очень высока, так как ионы плотно упакованы.

Это, казалось бы, предполагает очень высокую проводимость. С другой стороны, когда положительные и отрицательные ионы объединяются, они нейтрализуют друг друга, подобно ионам натрия и хлора в пищевой соли. Благодаря плотной упаковке ионов образование нейтральных пар весьма вероятно. Нейтральные частицы не могут поддерживать электрический ток, поэтому проводимость должна исчезнуть.

Чтобы раскрыть природу электропроводности в этих системах, международная группа ученых провела обширное моделирование ионных жидкостей комнатной температуры. Ученые разработали специальные вычислительные методы и теоретические подходы для изучения динамики частиц в ионных жидкостях комнатной температуры.

Оказалось, что механизм электропроводности в таких жидкостях весьма необычен. Большую часть времени положительные и отрицательные ионы проводят в нейтральных парах или кластерах, где их электрический заряд компенсируется противоположными зарядами. Таким образом образуется нейтральное вещество, которое не может проводить электричество. Однако, время от времени положительные и отрицательные ионы «рождаются» в различных местах жидкости, что делает ее проводящей.

«Рождение» ионов происходит из-за тепловых колебаний (флуктуаций). Иными словами, некоторые ионы случайно получают «порцию» энергии из окружающей жидкости. Этот всплеск энергии приводит к разрушению связей с другими ионами и ион освобождаются. Тщательный анализ показал, что положительные и отрицательные ионы в основном рождаются парами. Энергия, необходимая для рождения пары ионов, имеет порядок тепловой энергии, равной средней кинетической энергии молекул.

Правда, живут свободные ионы совсем недолго. Через некоторое время они возвращаются в связанное состояние, где они снова не способны проводить электричество. В этом состоянии они ждут нового «периода свободы». Механизм проводимости в ионных жидкостях напоминает эстафету с зарядом: возникающие свободные ионы поддерживают электрический ток и несут свой заряд до тех пор, пока «живы». Когда они «умирают», возвращаясь в нейтральное состояние, другие новые ионы продолжают эстафету, сохраняя проводимость жидкости и постоянный электрический ток.