Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах).
ИИ поможет точнее прогнозировать риск ожирения / © Ehimetalor Akhere Unuabona, unsplash.com
Результаты опубликованы в журнале Frontiers in Medicine. Традиционные методы оценки генетического риска, основанные на линейной регрессии, не учитывают сложные взаимодействия генов, влияющие на развитие заболеваний. Эти эпистатические эффекты трудно уловить с помощью классических моделей, что снижает точность прогнозов.
Чтобы преодолеть эти ограничения, исследователи смоделировали данные с разными типами эпистаза — аддитивным, мультипликативным и пороговым — и обучили нейросетевые модели на генетических данных более чем 58 тысяч человек европейского происхождения. В ходе работы симулировались различные сценарии взаимодействия генов и оценивалось их влияние на риск развития заболеваний.
Применение методов глубокого обучения, в частности рекуррентных нейронных сетей (RNN), позволило существенно повысить точность прогнозирования. Наиболее заметное улучшение достигнуто при оценке риска диабета первого типа: показатель площади под ROC-кривой (AUC) составил 0,823 для моделей RNN.
«Результаты нашего исследования показывают новые возможности для персонализированной медицины и профилактики. Если мы сможем точнее определять индивидуальные риски, это поможет врачам разрабатывать более эффективные стратегии лечения и предотвращения болезней», — отмечает Мария Попцова, заведующая Международной лабораторией биоинформатики.
Таким образом, исследование подтверждает высокую эффективность нелинейных моделей машинного обучения в предсказании генетических рисков, что открывает путь к более точной персонализации медицинских рекомендаций и терапии.
«Генетический паспорт становится неотъемлемой частью современной персонализированной медицины. Недостаточно просто расшифровать геном человека — необходимо максимально информативно интерпретировать результаты. Для этого мы постоянно работаем над обучением новых моделей для оценки рисков мультифакторных заболеваний. Наше совместное исследование показывает, что нейросети могут быть эффективными и в этой области», — рассказывает Александр Ракитько, директор по науке Genotek.
На основе проведенного исследования команда Центра искусственного интеллекта НИУ ВШЭ разработала специальное программное обеспечение — «Модели глубинного обучения для полигенной оценки риска». Программа позволяет прогнозировать вероятность развития заболеваний, анализируя индивидуальные вариации в геноме. Эта разработка уже лицензирована компанией Genotek для дальнейшего применения в практических генетических исследованиях.