Колумнисты

В ИТМО разработали способ создания элементов плазмоники

Ученые постоянно придумывают новые материалы, которые сулят индустрии совершенно новые свойства, способные перевернуть ту или иную технологию. Но придумать такие материалы мало – необходимо найти эффективный способ их обработки. Более того, зачастую композиты получаются благодаря добавлению микро- или даже наночастиц в основную структуру, поэтому необходимо разработать способ контроля за тем, чтобы все частицы легли на свое место без мельчайших, незаметных глазу, отклонений. В Университете ИТМО усовершенствовали технологию локальной обработки таких композитов на основе пористого стекла с добавлением серебра и меди. Теперь можно в процессе обработки с очень высокой точностью предсказать оптические свойства получившегося плазмонного элемента.

Работа опубликована в журнале Nanomaterials. На протяжении тысячелетий люди вынуждены были подстраивать свою деятельность под имеющиеся в их распоряжении материалы – металлы, дерево, камень, минералы и так далее. Сегодня люди научились приспосабливать имеющиеся у них ресурсы под свои требования, создавая так называемые композитные материалы, состоящие из нескольких компонентов, совершенно непохожих по своим свойствам и дающих при соединении новые возможности.

Высокий потенциал открывает их использование в оптических приборах, таких как лазеры, лидары, датчики, линзы, волноводы – везде, где надо обрабатывать световой сигнал. В частности большие надежды возлагаются на стекло с добавлением наночастиц металлов.

«Такие материалы могут использоваться как оптические фильтры, — рассказывает инженер-исследователь факультета лазерной фотоники и оптоэлектроники Университета ИТМО Павел Варламов. — Белый свет, как известно, состоит из большого числа длин волн, и вам, например, надо выделить или, наоборот, отсечь какой-то цвет – синий, желтый, красный. Именно для этого нужны оптические фильтры, их можно использовать в лазерах, отражателях, линзах, волноводах».

Иллюстрация процедуры лазерной обработки композита / ©www.mdpi.com

В зависимости от того, ионы какого металла добавляются в стекло, получившийся композит может быть использован для управления разными частями спектра. Так, если в стекло добавить наночастицы серебра и меди, то материал начинает поглощать излучение в сине-зеленой области света. Однако добавлять наночастицы серебра и меди в обычное стекло, которое используют для создания окон или различной посуды, процесс очень сложный и дорогой. Поэтому ученые используют для таких целей специальное пористое стекло.

После того как наночастицы металлов «укладывают» в поры, заготовку обрабатывают лазером, чтобы придать уникальные свойства материалу, который, например, позволяет точно управлять световым спектром, проводя или поглощая световые лучи строго определенного спектра.

Иллюстрация алгоритма / ©www.mdpi.com

Однако существует проблема – дело в том, что в ходе обработки, призванной «склеить» компоненты нового материала, наночастицы металла меняют форму и даже химический состав, вступая в реакцию с окружающим их стеклом. Это влияет на процесс обработки, делая его результат сложным в контроле. Нельзя просто заранее выставить лазер на определенные показатели и обрабатывать материал с начала до конца – необходимо все время подлаживаться под изменения, которые уже произошли в материале.

«Предложенный способ позволяет создать объемные микроразмерные элементы с контролируемым в реальном времени пиком плазмонного резонанса, — рассказывает младший научный сотрудник факультета лазерной фотоники и оптоэлектроники Университета ИТМО Роман Заколдаев. — Способ направлен на оптимизацию параметров лазерной обработки за счет наличия обратной связи».

Максим Сергеев (слева), Роман Заколдаев (по центру) и Владимир Рымкевич (справа) / ©Пресс-служба Университета ИТМО

Чтобы адекватно корректировать работу лазера в ходе обработки, ученым необходимо мгновенно производить сложные расчеты изменений, которые уже произошли и того, как надо перенастроить лазер. Для этого необходима гибкая математическая модель, которая могла бы лечь в основу алгоритма управления обработкой.

Ученые Университета ИТМО предложили такую математическую модель, которая учитывает данные о мощности излучения и изменениях, которые оно породило в материале. Это позволяет на выходе получать материал именно с теми оптическими характеристиками, которые были изначально заложены в расчеты.

«Нам удалось предложить алгоритм вычислений, который связал электронную структуру, размер и концентрацию наночастиц с оптическими свойствами материала в виде эффективной среды. – поясняет научный сотрудник факультета лазерной фотоники и оптоэлектроники Университета ИТМО Максим Сергеев. – Использование алгоритма совместно с моделью диффузионно-управляемого роста частиц позволила отслеживать оптические изменения в процессе лазерной обработки в режиме реального времени».

Эта модель позволяет сделать процесс создания таких уникальных оптических метаматериалов недорогим и легким в реализации, что открывает большие перспективы по внедрению таких материалов в производство.