Коллектив ученых ЮФУ впервые выявил эффект аномального поведения атомов вещества, осаждаемых на поверхность полупроводниковых подложек в присутствии атомов алюминия в условиях капельной эпитаксии. Это открывает путь к новым перспективным исследованиям наноструктурных веществ и позволяет продвинуться в области технологии создания устройств квантовой связи, которую практически невозможно взломать, и квантовых компьютеров, обладающих огромной вычислительной мощностью по сравнению с обычными компьютерами.
Исследование опубликовано в журнале Nanotechnology. «Капельная эпитаксия – это интересная методика технологии молекулярно-лучевой эпитаксии, когда вещества наращиваются друг на друга послойно», – рассказывает доцент Института нанотехнологий, электроники и приборостроения, руководитель проекта Максим Солодовник.
В ходе этого процесса первоначально формируются наноразмерные капли металла, которые затем, если в этом есть необходимость, выдерживаются в потоке молекул мышьяка или другого похожего элемента, что приводит к превращению капель в наноструктуры различного типа. Это позволяет контролировать структуру отдельных молекул и управлять ею.
«Такая технология очень перспективна для задач квантовых коммуникаций и вычислений. Приступая к исследованию, мы ожидали, что использование слоев с различным содержанием атомов алюминия (AlGaAs) позволит нам уменьшить размер молекул, как это происходит при обычной эпитаксии. Однако на практике мы обнаружили обратный эффект, что стало неожиданностью для нас – вещества, наслаиваясь, только увеличили объем структур», – продолжает Максим Солодовник.
Чтобы объяснить данный эффект, ученые разработали математическую модель на основе метода Монте-Карло, с помощью которой наблюдали за поведением атомов в условиях, максимально приближенных к экспериментальным. Суть метода заключается в том, что рассматриваемый процесс описывается математической моделью с использованием генератора случайных величин, модель многократно обсчитывается, на основе полученных данных вычисляются вероятностные характеристики.
«Детальное изучение протекающих процессов с помощью симуляций подтвердило, что в условиях капельной эпитаксии химическая активность атомов алюминия может проявлять себя иначе», – добавляет Сергей Балакирев, кандидат технических наук, ассистент ИНЭП ЮФУ, также принимающий участие в реализации проекта. Совокупность теоретических и экспериментальных данных позволила предложить физически обоснованное объяснение наблюдаемому эффекту.
«Обнаруженный эффект не только объясняет природу протекающих процессов на поверхности полупроводниковых подложек, но и дает возможность продвинуться в развитии эпитаксиальной технологии. Кроме того, в перспективе, данный эффект можно использовать как дополнительный управляющий параметр – ведь мы потенциально можем менять состав слоев, сохраняя при этом размер наноструктур», – заключает Максим Солодовник.
Эффект расширяет возможности управления свойствами наноструктур, поскольку изменение их состава и размера неизбежно приводит к изменению других параметров (например, длины волны поглощения или излучения). Исследование ученых ЮФУ позволяет продвинуться в области технологии создания устройств квантовой связи, которую практически невозможно взломать, и квантовых компьютеров, обладающих огромной вычислительной мощностью в ряде задач по сравнению с обычными компьютерами. Результаты получены в рамках проекта Российского научного фонда «Новые подходы в капельной эпитаксии наноструктур А3В5».
Автор – Дарья Терёхина
Комментарии
Интересная тема, но раскрыта не полностью. Я бы лучше посмотрел видео в ТикТоке чем читать эту статью. Нужно больше не понятных графиков богу графиков!!! Кстати вот это предложение божественно - "технологии создания устройств квантовой связи, которую практически невозможно взломать, и квантовых компьютеров, обладающих огромной вычислительной мощностью"
Тут явно квантовая неопределённость вмешалась, поэтому эта фраза два раза в тексте статьи встречается.