Site icon Naked Science

Ученые предложили систему сбора ягод с распределением обязанностей между роботами

Земляника ананасная / © 4028mdk09, Wikipedia

Сезонный всплеск спроса на ягоды, например, клубнику, чернику и морошку, наблюдается ежегодно с наступлением летнего периода. Особенно высока популярность «виктории», объемы продаж которой исчисляются тоннами. Однако за этим видимым изобилием скрывается серьезная экономическая проблема: высокая стоимость ручного труда, напрямую влияющая на розничные цены, делая сельскохозяйственные культуры менее доступными для потребителей.

Согласно данным Минсельхоза, только в 2025 году для уборки урожая в России потребовалось привлечь около 50 тысяч сезонных рабочих. Эта цифра наглядно демонстрирует, что даже в эпоху повсеместной автоматизации аграрный сектор остается одной из немногих отраслей, все еще основанной на ручном труде.

Причина в биологических особенностях ягод. Они хрупкие, легко мнутся и повреждаются при механическом воздействии. Дополнительную сложность создает то, что спелые плоды часто скрыты под листвой, оставаясь недоступными для большинства видов техники.

К тому же, современные технические решения несовершенны. Дроны не подходят из-за короткого времени работы, малой грузоподъемности и неспособности находить плоды под листьями. Доступные модели роботов функционируют нескоординированно: каждый действует самостоятельно на основе данных только своих датчиков. Это приводит к низкой эффективности, так как они повторно обрабатывают одни и те же участки и пропускают другие, не обмениваясь информацией.

Решение предложили ученые Пермского Политеха. Они разрабатывают систему для автоматизированного сбора ягод на больших сельскохозяйственных территориях с использованием группы мобильных роботов. В отличие от существующих аналогов, предлагаемый подход основан на создании не универсального робота, а набора разных агентов-помощников, где каждый из них выполняет свою часть работы. Статья опубликована в сборнике «Инновационные технологии: теория, инструменты, практика».

— Создание одного устройства, способного одновременно искать, собирать и транспортировать ягоды, технически сложно и экономически нецелесообразно. Такие роботы, как правило, получаются слишком тяжелыми, начинают утрамбовывать почву и топтать грядки, тратят много энергии на развороты и могут подолгу задерживаться на одном месте в поисках плодов. Наш подход предполагает распределение функций между тремя типами автоматизированных помощников: компактные разведчики обнаруживают спелые ягоды и строят карту местности, механизмы-манипуляторы аккуратно собирают урожай, а агенты-бункеры обеспечивают транспортировку. Это позволяет параллельно выполнять все операции и значительно увеличивает общую производительность системы, — объясняет Антон Посягин, доцент кафедры «Автоматика и телемеханика» ПНИПУ, кандидат технических наук.

Для фермерских ягодных полей стандартного размера от одного до пяти гектаров (5 гектаров — это примерно семь футбольных полей) ученые оценили необходимое число роботов: от пяти до шести разведчиков, от двух до трех сборщиков и от одного до двух транспортировщиков. Такой состав обеспечивает полное покрытие территории и непрерывность рабочего процесса, а, кроме того, позволяет менять это количество в зависимости от сезона, чтобы, например, снизить общее энергопотребление системы.

Макет мобильного агента (ранняя версия) / © Пресс-служба ПНИПУ

Однако для слаженной работы робототехники на больших полях требуется надежная коммуникация. Поэтому ученые выбрали радиосвязь, так как она обеспечивает достаточную дальность и стабильность соединения. К тому же, это решение определило принцип всей работы системы.

Ее основой стала централизованная платформа управления, где координация осуществляется из единого центра, а автоматизированные помощники выполняют заданные команды. Вместо того чтобы наделять каждого робота автономностью (когда каждый сам принимает решение, куда ехать и что делать), ученые разработали эффективный порядок обмена данными. При таком подходе управляющий компьютер координирует действия всех устройств, получая от них краткие отчеты об обстановке и выдавая конкретные команды для дальнейших операций.

— Для организации связи исследователи разработали алгоритм работы по принципу рации с поочередной передачей данных. Компьютер отправляет агенту короткий запрос и переключается на прием. Робот передает сжатый отчет об обстановке (например, «слева препятствие, справа свободно») и ожидает ответа. Обработав информацию, компьютер отправляет конкретную команду для дальнейших действий, — рассказал Антон Посягин, доцент кафедры «Автоматика и телемеханика» ПНИПУ, кандидат технических наук.

Такой последовательный обмен сообщениями позволяет поддерживать стабильную связь со всеми роботами одновременно, без помех и потери данных, даже когда в поле работает целая группа аппаратов.

Чтобы проверить надежность этой системы связи на практике, ученые сначала собрали экспериментальную установку из трех тестовых образцов. Именно на этом этапе «мозг» системы — управляющий компьютер — впервые начал работать с реальными аппаратами. Он получал от них данные и отрабатывал свою главную задачу: в реальном времени строил общую карту местности, распределял зоны между устройствами, планировал маршруты и координировал действия всей группы, чтобы они не мешали друг другу. На них отработали три ключевых сценария: как система работает при поломке одного робота, как разные алгоритмы планирования маршрутов справляются с полями разной формы, и как несколько роботов взаимодействуют, не мешая друг другу.

Результаты испытаний подтвердили преимущества централизованной системы — устройства демонстрировали более высокую эффективность по сравнению с децентрализованными аналогами: обеспечивали полный охват территории без дублирования маршрутов и сохраняли работоспособность при выходе из строя любого агента, тогда как альтернативные системы показывали хаотичное движение и низкую производительность.

Положительные результаты тестирования макета позволили перейти к сборке полнофункционального прототипа. На сегодняшний день ученые уже создали работающего робота-разведчика — компактное устройство размером 40 сантиметров с гусеничным механизмом для повышенной проходимости по неровной сельскохозяйственной местности. Данный аппарат также оснащен инфракрасными датчиками для обнаружения препятствий и магнитными энкодерами (устройства, преобразующие механическое вращение в точные цифровые данные о положении и скорости) для точного определения пройденного пути.

— Сейчас мы работаем над оснащением прототипа системой компьютерного зрения для распознавания спелых ягод, а также над созданием отдельных манипуляторов (с гибким захватным устройством) для аккуратного сбора и агентов-бункеров (с емкостью) для транспортировки, — поделился Антон Посягин.

Данная технология открывает путь к полной автоматизации одного из самых трудоемких процессов в сельском хозяйстве, что в перспективе позволит увеличить объемы урожая и снизить его себестоимость для потребителей.

Exit mobile version