Токсин, синтезируемый бактериями, смог решить задачу, которая была слишком сложной для технологии CRISPR-Cas9.
Большинство клеток нашего организма имеют сразу две «генетические библиотеки». Одна из них находится в ядре, вторая — в митохондриях, «энергетических станциях» клетки. До сих пор ученые знали, как внести направленные изменения только в ядерную ДНК. Статья, опубликованная американскими исследователями в Nature, описывает способ целевого редактирования митохондриальных нуклеиновых кислот.
Основой для технологии, позволяющей вносить изменения в геном митохондрий, стал токсин Ddda. Он синтезируется грамотрицательными бактериями Burkholderia cenocepacia, помогая им конкурировать за питательные ресурсы с другими микроорганизмами. Этот токсин катализирует изменения в ДНК, превращая один из ее нуклеозидов, цитозин, в урацил — азотистое основание, характерное для РНК.
Это далеко не первый случай, когда у микроорганизмов обнаруживаются «инструменты», помогающие вносить изменения в гены. В генной инженерии активно используются деаминазы — ферменты, которые также превращают цитозин в урацил, заменяя аминогруппу NH2 на атом кислорода. Однако этот фермент работает лишь на однонитевой ДНК, в то время как в наших митохондриях она двухнитевая.
Теоретически эту проблему можно было решить при помощи системы редактирования генов CRISPR-Cas9 в комплексе с деаминазами и дополнительными ферментами для расплетания двухнитевой ДНК. Однако использование такого подхода затрудняет селективная мембрана митохондрий: в частности, она не пропускает относительно громоздкие РНК-матрицы, необходимые в такой методике для идентификации определенных последовательностей ДНК.
Использование Ddda, который способен работать с двухцепочечной ДНК, позволило обойти эти препятствия. Исследователи соединили токсин с так называемым TALE-белком, который способен распознавать определенные домены в ДНК и связываться с ними. Комплекс Ddda-TALE находит в митохондриальных генах нужную последовательность и меняет в ней цитозин на урацил; последний позже превращается в тимин — другое азотистое основание, характерное для ДНК.
Лабораторные тесты показали, что Ddda-TALE дает нужные ученым изменения в генетическом коде примерно в 50% случаев. На первый взгляд это не кажется таким уж хорошим результатом. Однако при отсутствии других подходящих кандидатов на роль инструмента для редактирования митохондриальных генов, а также учитывая отсутствие каких-либо признаков потенциально катастрофических изменений за пределами целевых последовательностей, это достижение — серьезный научный успех.
Как и мутации в ядерной ДНК, генетические изменения в митохондриальных генах могут влиять на состояние организма, вызывая различные патологии, которые передаются потомству. Дальнейшее развитие технологии Ddda-TALE должно помочь в разработке и внедрении надежного инструмента, который позволит устранять такие мутации.
Ранее мы писали о том, что технологию генетического редактирования CRISPR непосредственно в теле пациента впервые использовали для лечения слепоты у человека, а физиологи из США рассматривают перспективы вмешательства в эпигенетику и генетику человека для защиты ДНК от космической радиации.