Физика

Физики создали новую магнитную квазичастицу — вортион

Ученые создали новое магнитное состояние — магнито-ионный вихрь, или «вортион». Их разработка обеспечивает точный контроль магнитных свойств на наномасштабе при комнатной температуре и прокладывает путь для более энергоэффективных вычислительных устройств.

С распространением машинного обучения и инструментов, основанных на нем, все компании стали стараться работать с большими данными. Это привело к заметному росту энергопотребления. В большинстве случаев для записи информации используют электрические токи, а обрабатывающие данные устройства нагреваются и так теряют часть энергии.

Если использовать магнитные запоминающие устройства и управлять ими с помощью напряжения, а не тока, можно значительно сократить энергозатраты. Для таких устройств можно использовать магнито-ионные материалы. Их свойства можно изменять, добавляя или удаляя ионы через перемену полярности приложенного напряжения.

До сих пор большинство исследователей работали со сплошными пленками магнито-ионных материалов, а не на управлении отдельными «битами». При этом для обеспечения хранения данных с высокой плотностью ученым и инженерам нужно добиться контроля именно над минимальными единицами хранения информации.

Международная группа ученых нашла решение, позволяющее управлять магнито-ионными материалами с высокой точностью. Они объединили магнито-ионные эффекты и магнитные вихри в новом магнитном состоянии — вортионе. Научная статья опубликована в журнале Nature Communications.

На масштабе около микрометра в материалах могут возникать явления, отсутствующие в более крупных системах, например магнитные вихри — небольшие структуры, напоминающие спирали. Их используют для записи и чтения магнитных данных и в биомедицине. Однако изменить состояние уже существующего вихря либо невозможно, либо требует значительных затрат энергии.

Сформированный учеными вортион позволяет с высокой точностью контролировать магнитные свойства наноструктур в форме точек. Исследователи регулируют нужные параметры за счет удаления ионов азота с помощью напряжения. Это делает управление вортионами энергоэффективным.

«Это принципиально новый объект на наномасштабе. Существует огромный спрос на управление магнитными состояниями на этом уровне, но, что удивительно, большая часть исследований в области магнито-ионных эффектов до сих пор была сосредоточена на сплошных материалах. Если же рассмотреть влияние движения ионов в дискретных наноструктурах, например в изученных нами наноточках, становится очевидно, что в них появляются уникальные динамически изменяющиеся конфигурации спинов», — объяснил руководитель исследования Хорди Сорт (Jordi Sort).

Конфигурация спинов и магнитные свойства вихрей зависят от длительности приложенного напряжения. Наноточки, изначально не обладающие магнитными свойствами, можно перевести в несколько состояний— от магнитных вихрей с разными характеристиками до состояния с однородной магнитной ориентацией.

«С помощью созданных нами вортионов мы можем беспрецедентно точно управлять такими магнитными свойствами, как намагниченность, коэрцитивная сила, остаточная намагниченность, магнитная анизотропия и критические поля, при которых вихри возникают или исчезают. Эти свойства ключевые для хранения информации в магнитных запоминающих устройствах, а теперь их можно настраивать аналоговым и обратимым способом, активируя процесс напряжением и потребляя при этом минимальное количество энергии», — рассказала первая автор статьи Ирэна Спасоевич (Irena Spasojević).

Ученые также предположили, что настраиваемые магнито-ионные вихри могут использоваться в нейросетях в качестве динамических синапсов, способных имитировать работу биологических синапсов. В мозге связи между нейронами — синапсы — обладают разными «весами» (силами), которые изменяются в процессе обучения. Работа биологических нейронов и синапсов тоже управляется электрическими сигналами и миграцией ионов, как и свойства вортионов.

Вортионы могут помочь ученым создать настраиваемые синаптические веса в виде управляемой намагниченности или магнитной анизотропии для нейроморфных спинтронных устройств. Исследователи считают, что, помимо нейроморфных вычислений, аналоговых систем и многослойных запоминающих устройств, «вортионы» могут найти применение в медицине (например, в методах терапии), защите данных и вычислениях, основанных на магнитных спинах.

Использование напряжения вместо электрического тока позволяет снижать и предотвращать перегрев устройств, таких как ноутбуки, серверы и центры обработки данных, значительно снижая потери энергии.