Исследователи из Университета Аделаиды (Австралия) впервые сняли живые эмбрионы с использованием камер, разработанных для квантовых измерений. Высокая точность этих приборов позволяет избежать повреждения биологических тканей от дополнительного освещения, необходимого для обычных методов съемки.
Изображение живого эмбриона мыши без оптимизации, с увеличенным освещением и с оптимизацией захвата данных / © APL Photonics (2025). DOI: 10.1063/5.0245239
Визуальная информация крайне важна во многих областях науки, и сегодня мы научились строить изображения с помощью всего спектра излучения, от теплового до рентгеновского, а не только видимого. Кроме того, используем для визуализации данные о магнитных и электрических полях.
Иногда ни один из этих методов не подходит. Нежные и живые биологические ткани могут страдать и повреждаться не только от лишнего тепла или рентгена, но и просто от освещения. Использование минимального уровня света вместе с этими очень чувствительными камерами помогает изучать живые и развивающиеся клетки.
Многие соединения в клетках начинают испускать излучение при внешнем освещении, это явление называют флуоресценцией. Параметры флуоресценции помогают ученым определить, что именно происходит в тканях и с какими веществами. К сожалению, излучение обычно слабое.
Квантовые камеры помогают решить эту проблему. Они способны улавливать гораздо более слабые сигналы, поэтому модифицированные для их использования микроскопы становятся более эффективными и точными инструментами исследований.
Физики изучили, как лучше всего использовать сверхчувствительные камеры для работы с живыми тканями. В исследование включили новейшие модели камер, способные регистрировать отдельные фотоны. Эта технология позволила исследователям освещать живые клетки минимальными дозами света.
Ученые провели эту работу в рамках доклинического этапа исследования перспектив метода. Для освещения образца они применили метод микроскопии плоскостного освещения (light sheet fluorescence microscopy, LSFM) и два вида камер: на КМОП-матрице и EMCCD-камеру (electron-multiplying charge-coupled device), работающую на управляемом переносе заряда в объеме полупроводника. Результаты опубликованы в журнале APL Photonics.
Большая часть проекта заключалась в разработке метода для объективного сравнения качества изображений, полученных с помощью разных камер. Ученые также проанализировали, как можно использовать искусственный интеллект для удаления шума с полученных изображений. Применение и ИИ, и квантовых камер выходит за рамки простой установки камеры в микроскоп для съемки, но значительно увеличивает качество данных без вреда для живых тканей.
Квантовые состояния света могут быть использованы для получения дополнительной информации о биологическом образце. Ученые продолжат работу с трансфером инструментария квантовых исследований в биологию и медицину.