Ученые РХТУ имени Д. И. Менделеева вместе с российскими и греческими коллегами научились синтезировать перспективный проводящий полимер полианилин локально на поверхности частиц силикагеля. Исследователи планируют использовать новый материал для создания носителей фармакологических препаратов, а также отработать метод на примере других полимеров и подложек.
Исследование опубликовано в августовском номере журнала Polymer. Полианилин — один из самых популярных полимеров молекулярной электроники. Из него можно изготавливать транзисторы, суперконденсаторы, покрытия для электростимуляции роста биологических тканей и другие устройства, он также перспективен для адресной доставки лекарств и терапии онкозаболеваний.
Однако работать с полианинилином не просто. Он плохо растворим в большинстве растворителей, не плавок и в чистом виде представляет собой порошок, из которого сложно изготовить нужное изделие. Лучший выход — нанесение полианилина на подложки. Так, с помощью электрополимеризации полианилиновые покрытия можно получить на поверхности электропроводящих материалов, но в случае непроводящих подложек этот метод недоступен.
Вместо этого проводят химическую полимеризацию: непроводящую подложку вносят в раствор мономера анилина и добавляют в эту смесь окислитель. Постепенно на поверхности образуется пленка полимера, но параллельно с этим в объеме раствора также появляются нерастворимые полимерные гранулы, которые оседают на подложку, затрудняя контроль свойств и морфологии покрытия. Последнее становится неоднородным, в нем появляются дефекты, что негативно влияет на его свойства.
В новом исследовании использовали другой подход. «Мы локализовали реакционную зону непосредственно на поверхности подложки и провели на ней полимеризацию, – рассказывает один из авторов работы, профессор РХТУ, Ярослав Межуев. – Для этого мы взяли частицы силикагеля, осадили на них нерастворимый окислитель, а дальше привели их в контакт с раствором анилина: на поверхности частиц пошла полимеризация, а в объеме, где не было окислителя, процесс был подавлен. И так был разработан интересный метод, перспективный для адресного формирования полианилиновых слоев и контроля их свойств».
В дополнительных экспериментах ученые изучили процесс в деталях. Так, с помощью метода электронного парамагнитного резонанса отслеживалась кинетика протекающих реакций, и было доказано, что полимеризация идет только на границе раздела твердого носителя (силикагеля) и жидкого раствора мономера. Кроме того, предполагается, что процесс протекает преимущественно в порах носителя маленького размера.
Теперь исследователи хотят распространить новый подход на нанообъекты и испытать частицы покрытые полианилином в качестве носителей фармакологических препаратов: молекула полианилина электрически заряжена и поэтому на нее достаточно легко иммобилизовать различные вещества.
«Вообще предложенный подход гораздо шире и, видимо, принципиально не ограничен использованными подложкой, мономером и окислителем, – говорит Ярослав Межуев. – Не обязательно синтезировать полианилин — можно получать другой проводящий или непроводящий полимер по реакции окислительной полимеризации, не принципиально.
Не обязательно брать именно силикагель — таким же образом можно модифицировать любую другую подложку, главное только чтобы она была инертна по отношению к нерастворимому окислителю, который в свою очередь должен быть достаточно активен в реакции полимеризации выбранного мономера. То есть этот метод проведения окислительной полимеризации на границе раздела фаз твердое вещество – жидкость, видимо, универсален».