Результаты исследования опубликованы в журнале Journal of Alloys and Compounds. В основе большинства современных перезаписываемых оптических дисков (CD, DVD, Blue-Ray) лежит материал под названием GST — сплав германия (Ge), сурьмы (Sb) и теллура (Te), Ge2Sb2Te5. GST может находиться в кристаллическом и аморфном состоянии и «переключить» их сравнительно легко: если на аморфный GST точечно воздействовать лазерным излучением, так чтобы его поверхность разогрелась до определенной температуры, то при остывании он кристаллизуется.
При этом коэффициенты оптического отражения этих состояний сильно отличаются, и именно на этом основан общий принцип записи в GST, однако в подробностях процесс кристаллизации GST под действием фемтосекундного лазерного излучения (особенно в тонких поверхностных слоях пленок) еще не изучен.
«Разные научные группы работают на разном оборудовании и поэтому у них отличаются параметры лазерного пучка — длина волны, длительность импульса, частота повторения импульса, размер лазерного пятна, энергия импульса, а это неизбежно влияет на свойства GST материалов», — рассказывает один из авторов работы, сотрудник РХТУ, Михаил Смаев.
— К данной теме мы шли постепенно. После получения установки, позволяющей проводить фемтосекундную модификацию, мы познакомились с людьми, умеющими напылять тонкие пленки GST, и потом начали с ними сотрудничать в плане изучения режимов воздействия ультракоротких лазерных импульсов на эти материалы».
Ученые из ИОНХ РАН, МИЭТ, РГРТУ, ФИАН и РХТУ имени Д. И. Менделеева работали с GST пленками трех разных толщин (30, 80 и 130 нм), нанесенными на подложки двух типов: диэлектрическую и проводящую. Пленки облучались лазерными импульсами с длительностью 185 фемтосекунд но с разной энергией и частотой, а потом с помощью атомной-силовой микроскопии, оптической микроскопии и спектроскопии комбинационного рассеяния изучали структуру пленок.
Оказалось, что при умеренном значении плотности энергии лазерных импульсов (от 100 до 200 нДж) кристаллическая фаза формируется только в центре лазерного пучка, что приводит к образованию зоны мелкозернистого поликристаллического материала. А при более высоких плотностях энергии материал пленки начинает плавиться по всей области облучения и после кристаллизуется уже преимущественно на ее краях в виде крупных кристаллических зерен. Кроме того, ученые показали, что толщина пленки по-разному влияет на характер кристаллизации в зависимости от подложки, на которую нанесен GST.
Установленные закономерности могут стать полезными не только для оптических дисков нового поколения, но и для разработки устройств энергонезависимой памяти на основе фазовых переходов. В перспективе такая фазовая память характеризуется очень высокой скоростью записи и может перезаписываться десятки тысяч раз, однако на данный момент ее применение ограничено из-за множества нерешенных фундаментальных вопросов, которые ученые планируют решить в дальнейших исследованиях.