Тематические модели — алгоритмы машинного обучения, способные сортировать большие объемы текстов по темам. Исследователи из НИУ ВШЭ в Санкт-Петербурге сравнили пять тематических моделей и определили, какие из них работают лучше. Наименьшее число ошибок показали две модели, одна из которых, GLDAW, — разработка Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге.
Статья опубликована в журнале PeerJ Computer Science. Подробнее — в материале IQ.HSE. Человеческому мозгу обычно нетрудно определить тему публикации. К примеру, к этой статье любой редактор с легкостью поставит теги «наука» и «машинное обучение», однако процесс сортировки информации человеком занимает много времени, что становится критичным при большом ее объеме. Современный компьютер может сделать это гораздо быстрее, но для этого нужно решить сложную задачу — выявить смысл документов по их содержимому и классифицировать их.
Этим занимается тематическое моделирование — область алгоритмов машинного обучения, которая направлена на сортировку текстов по темам. Оно используется для облегчения поиска информации, анализа масс-медиа, определения тематики сообществ в социальных сетях, выявления трендов в научных публикациях и решения прочих задач. К примеру, с помощью анализа финансовых новостей можно точнее предсказывать объем торгов на бирже, на который значительно влияют высказывания политиков, события в экономической сфере.
Работа с тематическими моделями выглядит так: алгоритм получает на входе коллекцию текстовых документов. На выходе каждому документу выдается оценка степени принадлежности какой-то теме. Эти оценки основываются на частоте употребления слов и связях между словами и предложениями. Так, встречающиеся в этом тексте слова «ученые», «лаборатория», «анализ», «исследовали», «алгоритмы» позволяют отнести его к теме «наука».
Однако многие слова встречаются в текстах на разные темы, например, слово «работа» часто употребляют в текстах про промышленное производство или рынок труда. Употребление этого слова в сочетании «научная работа» позволяет отнести текст к категории «наука». Такие взаимосвязи, выраженные математически с помощью матриц вероятностей, лежат в основе работы алгоритмов.
Улучшить качество работы тематических моделей можно за счет эмбедингов (векторов чисел фиксированной длины, которые описывают некую сущность по ряду параметров), которые выступают в качестве дополнительной информации, обученной на миллионах текстов.
Ученые Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге исследовали пять тематических моделей: ETM, GLDAW, GSM, WTM-GMM и W-LDA, которые основаны на разных математических принципах.
• ETM — модель авторитетного математика Дэвида Блея, одного из родоначальников направления тематического моделирования в машинном обучении. Его модель базируется на методе латентного размещения Дирихле и вариационном принципе расчета матриц вероятностей в сочетании с эмбедингами.
• Две модели — GSM, WTM-GMM — нейросетевые тематические модели.
• W-LDA реализована на основе процедуры сэмплирования Гиббса с учетом эмбедингов, но, как и в модели Блея, там используется распределение Дирихле.
• GLDAW в процессе определения принадлежности слов к темам опирается на большую коллекцию эмбедингов.
Для эффективной работы любой тематической модели необходимо определить, на сколько категорий, или кластеров, нужно разбить информационный поток. Это дополнительная сложная задача при настройке алгоритмов.
«Человеку обычно заранее не известно, сколько тем присутствует в информационном потоке, поэтому задачу определения числа тем надо переложить на машину. Для этого мы предложили измерять определенную величину информации как противоположную от хаоса. Если хаоса много, то информации мало, и наоборот. Это позволяет оценивать число кластеров, или в данном случае тем, присущих датасету. Эти принципы мы применили в модели GLDAW», — пояснил Сергей Кольцов, первый автор статьи, ведущий научный сотрудник Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге.
Исследователи протестировали модели по показателям стабильности (количеству ошибок), когерентности (определению связности) и энтропии Реньи (определению уровня хаоса). Качество работы алгоритмов испытывали на трех датасетах: материалах русскоязычного новостного ресурса Lenta.ru и двух англоязычных датасетах — 20 Newsgroups и WoS. Такой выбор был связан с тем, что в этих источниках всем текстам изначально были присвоены теги, что позволяло оценить работу алгоритмов по выявлению тем.
Эксперимент показал, что модель ETM — лучшая по когерентности для датасетов Lenta.ru и 20 Newsgroups, в то время как модель GLDAW заняла первое место для датасета WoS. Кроме того, GLDAW наиболее стабильна среди всех протестированных моделей, хорошо определяет оптимальное количество тем и эффективно работает с небольшими текстами, типичными для социальных сетей.
«Мы улучшили работу алгоритма GLDAW за счет использования большой коллекции внешних эмбеддингов, собранной на основе миллионов документов. Это позволило точнее определять семантическую связность между словами и, соответственно, точнее группировать тексты», — рассказал Сергей Кольцов.
Модели GSM, WTM-GMM и W-LDA продемонстрировали более низкие результаты, чем модели ETM и GLDAW, по всем трем показателям. Для исследователей это стало неожиданностью, поскольку считается, что модели на основе нейронных сетей во многом превосходят другие виды моделей в машинном обучении. Причины их неэффективности в тематическом моделировании ученым еще предстоит выяснить.