Колумнисты

Искусственный интеллект научился находить дефекты ткани быстрее человека

В современном текстильном производстве контроль качества продукции занимает центральное место, поскольку такие дефекты, как несовпадение рисунка, распущенные нити и отклонения в цвете могут значительно сказаться на характеристиках конечного изделия. Ученые МТУСИ предложили метод формирования признаков текстурированного изображения, который можно применить для построения математической модели текстильного материала при решении задач автоматизации процесса разбраковки.

До недавнего времени большинство операций по контролю качества тканей осуществлялось вручную, что позволяло выявить лишь около 70% возможных дефектов. Современные технологии предлагают новые решения — автоматизированные системы контроля качества на основе компьютерного зрения — которые уже находят применение в текстильной, деревообрабатывающей и химической промышленностях.

Система автоматического контроля качества (САКК) состоит из сканера, системы распознавания и модуля принятия решений. Одной из важных задач таких систем является определение изменения структурных свойств материалов   на этапе выявления брака. Для проверки качества однотонных тканей, равно как и для выявления характерных особенностей их структуры, применяют различные методы контроля, например, оптические методы.

Однако, существующие алгоритмы распознавания часто не позволяют обнаруживать дефекты материалов в режиме реального времени, особенно если их количество увеличивается. Отмечается, что один из путей повышения эффективности таких систем распознавания – это создание методик предварительного анализа текстурированной геометрической пространственной модели (ткани) и усовершенствование алгоритмов обнаружения дефектов тканей в системах с эталонными моделями.

Ученые МТУСИ предложили метод формирования признаков текстурированного изображения, который может быть применен для построения математической модели текстильного материала (ткани) при решении задач автоматизации процесса разбраковки.

Новшество такого метода — создание эталонов — образцов, с которыми сравниваются изображения тканей для выявления дефектов.

«Анализ качества ткани относительно эталонного состояния позволяет выделять существенные особенности структуры ткани вплоть до анализа состояния единичных переплетений, — отмечает профессор, доктор технических наук Сергей Рожков. — При этом в данной постановке задачи ткань, как объект контроля, целесообразно рассматривать как двумерный периодический объект».

В исследовании интересным инструментом стало применение пространственной автокорреляционной функции, которая помогла ученым проанализировать структурные элементы ткани.

«Разработка модели проводилась в среде MATLAB. При выделении контуров изображения были выявлены особенности периодичности структуры ткани, а наличие корреляционного максимума позволило определить основные частоты структуры, — рассказал о ходе исследования кандидат технических наук, доцент Вячеслав Воронов. – Для улучшения качества изображений применялись методы предварительной обработки изображений: коррекция яркости, устранение шумов и преобразование изображения для более детального анализа. При этом коррекция шкалы яркости позволила устранить систематические искажения исходного изображения аддитивного или мультипликативного характера».

В процессе исследования ученые обратили внимание на то, что корреляция не только усиливает основные частоты, но и выявляет скрытые периодичности в структуре ткани, что значительно усложняет задачу определения основных параметров структуры модели.  В свою очередь, применение в свертке гармоник, связанных с неравномерностью структуры ткани, позволило выделить скрытую периодичность по направлению основы ткани и выделить перекос, который имел место в образце ткани. Для определения основных частот модели ткани ученые использовали энергетический спектр изображения, с помощью которого была построена эталонная моногармоническая модель ткани.

Полученные в работе результаты охватывают только один из возможных подходов при контроле качества текстильных материалов. Дальнейшие исследования перспективны, с точки зрения создания систем контроля, для всего спектра дефектов текстильных материалов (тканей), в том числе с возможностью прогнозирования их характеристик.

В дальнейшем предполагается создание систем контроля качества, способных прогнозировать и детально анализировать дефекты текстильных материалов в процессе их производства. Совершенствование средств автоматизации контроля качества текстильных материалов позволяет не только повысить эффективность производства, но и улучшить качество текстильной продукции, удовлетворяя высокие стандарты отрасли. Материал опубликован в Сборнике трудов XVIII Международной отраслевой научно-технической конференции «Технологии информационного общества».