Манипуляции рентгеновским излучением намного сложнее таких же с излучением видимого диапазона. Если ученым нужно изменить направления рентгеновского пучка или сфокусировать его, в ход идут сложные структуры. Рентгеновская оптика выделена в самостоятельную прикладную дисциплину из-за особых проблем, которые она должна решать.
Рентгеновское излучение практически не преломляется материей, оно проходит вещество насквозь. А если не проходит, то сильно поглощается и рассеивается. Чтобы влиять на путь рентгеновского луча и фокусировать его, ученым приходится создавать многослойные структуры или линзы с воздушными полостями.
Исследователи смогли сделать из монокристалла ниобата лития (соединение LiNbO3, LN) рентгеновское зеркало, способное легко менять форму. Ниобат лития — пьезоэлектрик, он меняет форму при приложении напряжения. Новое зеркало позволяет быстро и значительно изменять размер рентгеновского пучка. Результаты исследования опубликованы в журнале Scientific Reports.
Теперь ученые могут менять размер пучка с 200 нанометров до 683 микрометров, расширять его в 3400 раз. Такая технология позволяет сначала провести обзорный анализ образца, а затем сфокусироваться на конкретных областях. В обычных условиях ученым пришлось бы перемещать образец и менять систему линз, а это значительно усложняет рабочий процесс.
Деформируемые зеркала уже делали, но они состояли минимум из двух материалов. Каждый слой в такой системе требует отдельного управления размером пучка, такая система не дает хорошо сфокусировать излучение. Зеркало из одного материала позволяет исследователям сделать процесс фокусировки пучка проще и быстрее.
Но в зеркале из ниобата лития все равно есть два слоя. У этого материала есть особое свойство: если его долго держать при высокой температуре, изменится его поляризационная структура на половину толщины нагреваемого кристалла. Из-за этого две области зеркала деформируются по разному, когда к ним прикладывают напряжение. Этот эффект дал ученым создать биморфную структуру для зеркала без необходимости склеивать части зеркала.
«Мы разработали зеркало толщиной всего 0,5 миллиметра. Этот результат, как ожидается, значительно расширит возможности всех экспериментов с использованием рентгеновского излучения синхротрона. Такие характеристики позволяют использовать его не только для рентгеновских лучей, но и в других областях, например для мощных промышленных лазеров», — объяснил Такао Иноуэ (Takato Inoue), первый автор исследования.