Колумнисты

В ИПФ РАН разработали метод изучения внутренних волн с помощью сликовых полос

Геофизики из Института прикладной физики РАН имени А. В. Гапонова-Грехова предложили новый способ отслеживания внутренних волн в морях и океанах. Ученые показали, что характеристики внутренних волн можно определить, наблюдая деформацию сликов на поверхности воды.

Результаты исследования опубликованы в специальном выпуске журнала Remote Sensing. Изучение климата Земли – одна из самых острых тем современной науки. Ученые усердно ищут более точные методы прогнозирования опасных погодных явлений и изменений климата. Один из факторов, влияющих на погоду, – морские и океанические течения, ветер, поверхностные и внутренние волны. Так называют волны в толще воды, распространяющиеся на границе, где происходят резкие изменения характеристик воды (ее температура и соленость). Слики – это полосы поверхностно-активных веществ (ПАВ) на воде, которые бывают искусственного или естественного происхождения. Особое опасение вызывают искусственные слики, возникающие из-за разливов нефти или нефтепродуктов из танкеров.

В 2020 году сотрудники ИПФ РАН выиграли грант на развитие когерентных радиофизических методов измерения параметров приповерхностных динамических процессов в океане. На распространение и форму загрязненных участков поверхности воды могут оказать существенное влияние внутренние волны. В рамках гранта ученые провели исследование того, как изменяется форма сликов под воздействием внутренних волн. Благодаря изучению зависимости формы сликовых полос от характеристик внутренних волн будет возможно более точное прогнозирование распространения поверхностных загрязнений, а также возможное восстановление характеристик внутренних волн.

Исследование ученых ИПФ РАН состояло из двух частей: натурные эксперименты и численное моделирование. Полевые эксперименты проводились в прибрежной зоне Черного моря со стационарной океанографической платформы в мае 2019 года. На поверхности воды ученые создавали искусственные сликовые полосы из растительного масла и наблюдали за их изменениями. Благодаря панорамным радиолокационным изображениям морской поверхности и прямым измерениям течений в толще воды, ученые параллельно отслеживали характеристики внутренних волн и изменения формы сликовой полосы. После они соотносили данные друг с другом.

Геофизики выяснили, что под влиянием внутренних волн изменяется ширина сликовой полосы и направление ее распространения. Для дальнейшего анализа деформации сликов ученые воспользовались численным моделированием. Численное моделирование позволило исследователям рассмотреть развитие формы слика в течение более длинного промежутка времени, а также изучить возможные сценарии динамики в других условиях. В итоге они обнаружили новые эффекты, которые не могли быть исследованы во время полевого эксперимента.

Моделирование показало, что существует три возможных сценария деформации сликовой полосы, которые зависят от того, как скорость внутренней волны соотносится с проекцией скорости фонового морского течения и амплитудой скорости солитонов внутренних волн.

«Говоря простым языком – если на изображении полоса искажается в форме треугольника, движущегося по полосе, то внутренняя волна «захватывает» слик. В случае, когда искажение имеет форму, похожую на неподвижную трапецию, то можно увидеть так называемый «эффект памяти». Это процесс, при котором быстро распространяющийся солитон оставляет деформированный слик позади, а после медленно смещается под действием фонового течения. В третьем варианте скорость внутренней волны меньше скорости фонового течения. Тогда реализуется режим предвестника внутренней волны (как в нашем натурном эксперименте)», – объяснил один из авторов исследования, заместитель заведующего отделом радиофизических методов в гидрофизике ИПФ РАН Иван Капустин.

Однако ученые выяснили, что возможно не только изучать слики через внутренние волны, но и решить обратную задачу. Благодаря данным о форме и распространении сликовых полос можно оценить основные характеристики внутренних волн. Таким образом, ученые смогут получать больше данных о них, а значит делать более точные климатические прогнозы на короткий и длинный промежуток времени.

Дальнейшее развитие темы этого научного исследования позволит строить новые автоматизированные алгоритмы обнаружения и идентификации различных процессов в океане, в том числе, с применением искусственного интеллекта.