В основе водородной энергетики лежит простое и чистое преобразование: химическая энергия водорода и кислорода превращается в электричество, а единственным «выхлопом» становится обычная вода. Центральный элемент этого процесса — топливный, а его сердце — протонообменная мембрана. Эта тончайшая полимерная пленка выполняет сразу несколько критически важных функций: она, подобно сверхточному ситу, пропускает через себя протоны (положительно заряженные ядра водорода), но при этом служит непреодолимым барьером для электронов и исходных газов — водорода и кислорода. Именно от свойств этой мембраны напрямую зависят мощность, безопасность и срок службы всего устройства.
Перед инженерами долго стояла сложная дилемма. Для высокой производительности мембрана должна быть как можно тоньше, чтобы протоны проходили через нее с минимальным сопротивлением. Однако тонкая пленка очень уязвима: в процессе работы топливного элемента она подвергается механическим нагрузкам, перепадам температур и влажности, что может привести к появлению микротрещин, утечке взрывоопасного водорода и в конечном итоге к выходу устройства из строя. Попытки укрепить мембрану, добавляя в нее армирующие волокна из инертных полимеров, приводили к другой проблеме: такие «усилители» не проводят протоны и, занимая часть объема мембраны, снижали ее общую эффективность. Возникал замкнутый круг: прочность в обмен на производительность.
Коллектив российских ученых поставил перед собой задачу: создать материал, сочетающий в себе механическую стойкость и высокую протонную проводимость. Для этого они разработали элегантную двухкомпонентную структуру, в которой армирующий каркас не только придает прочность, но и сам активно участвует в работе топливного элемента. Результаты работы опубликованы в журнале Advanced Engineering Materials.
«Топливные элементы с протонообменной мембраной привлекают значительное внимание как жизнеспособная альтернатива традиционным источникам энергии. Производительность таких топливных элементов неразрывно связана с характеристиками полимерной мембраны, выполняющей в них как роль сепаратора, для которого важна механическая прочность и низкая водородная проницаемость, так и роль электролита, чья протонная проводимость напрямую отражается на мощности устройства. В нашей работе мы сосредоточились на поиске баланса между проводящими и механическими свойствами, чтобы обеспечить повышенную безопасность топливного элемента и при этом сохранить его высокую эффективность. Электроспиннинговое волокно с иономером в составе позволило нам укрепить полимерную матрицу мембраны без значительной потери проводимости», — рассказала об исследовании Вера Пузакова, студентка магистратуры МФТИ, инженер-исследователь лаборатории технологий ионообменных мембран МФТИ.
В качестве основного материала исследователи использовали иономер типа Aquivion. Это современный перфторсульфоновый полимер, обладающий высокой способностью проводить протоны. Но главная инновация заключалась в подходе к его армированию. Вместо инертных волокон ученые создали поддерживающий каркас из нановолокон, полученных методом электроспиннинга (также называемого «электропрядение»). Этот метод позволяет под действием мощного электрического поля вытягивать из раствора полимера нити толщиной в сотни нанометров, сплетая из них нетканый материал, похожий на высокотехнологичный войлок. Уникальность этих нановолокон заключалась в их составе: они состояли из смеси прочного фторполимера и того же самого иономера Aquivion. Таким образом, ученые впервые вплели протон-проводящий компонент непосредственно в структуру армирующего каркаса.
На следующем этапе этот нановолоконный «скелет» пропитали жидкой дисперсией иономера Aquivion, которая заполнила все поры между волокнами. После специальных процедур прессования и вакуумного отжига получилась тонкая, однородная и прозрачная композитная мембрана, в которой прочный нановолоконный каркас был намертво слит с основной протон-проводящей матрицей.
Софья Морозова, заведующая лабораторией технологий ионообменных мембран МФТИ, пояснила: «Наша идея заключалась в создании так называемого самоармирования. Вместо того чтобы вводить в проводящую среду инородный, неработающий элемент, мы сделали сам каркас ионоактивным. Волокна придают мембране жесткость и устойчивость к разбуханию, а поскольку они сами содержат иономер, то не создают «мертвых зон» для транспорта протонов. Это позволило нам обойти классический компромисс и получить материал, прочный и эффективный одновременно».
Комплексные испытания нового материала подтвердили правильность выбранной стратегии. По сравнению с исходной мембраной из чистого Aquivion, протонная проводимость композитной мембраны снизилась незначительно. Зато по ключевым параметрам, отвечающим за долговечность и безопасность, новый материал продемонстрировал впечатляющий прогресс.
Во-первых, его водородная проницаемость — один из самых критичных параметров, отвечающих за безопасность — оказалась значительно ниже. Это означает, что риск утечки водорода через мембрану сведен к минимуму. Во-вторых, композитная мембрана показала улучшенную размерную стабильность: она гораздо меньше разбухала в воде, что предотвращает механические напряжения в топливном элементе во время работы.
Механические тесты также показали превосходство новой разработки. По сравнению с коммерческим аналогом Nafion 211, композитные мембраны обладали более высоким модулем Юнга и прочностью на разрыв, что подтверждает их повышенную механическую надежность.
Финальным экзаменом стала проверка мембраны в составе реального мембранно-электродного блока — сборки, имитирующей работу топливного элемента. Результаты превзошли ожидания. Мембрана толщиной 24 микрона показала пиковую удельную мощность 534 милливатта на квадратный сантиметр, что практически сопоставимо с показателем коммерческого эталона Nafion 211 (571 милливатт на квадратный сантиметр). Это доказывает, что разработанная технология позволяет создавать высокопроизводительные и при этом значительно более прочные и безопасные топливные элементы.
«Мы продемонстрировали, что интеграция ионоактивных нановолокон в иономерную матрицу — это эффективная стратегия для создания топливных элементов нового поколения, — добавила Софья Морозова. — Нам удалось существенно улучшить механические свойства и газобарьерные характеристики, пожертвовав лишь небольшой долей протонной проводимости. Это дает возможность создать топливные элементы с увеличенным ресурсом, которые смогут работать в более жестких условиях, что особенно важно для автомобильного транспорта и систем автономного энергоснабжения».
Новое исследование не только представляет высокоэффективную мембрану, но и предлагает фундаментальный подход к конструированию композитных материалов, в которых каждый компонент выполняет несколько функций. Дальнейшая работа ученых будет направлена на оптимизацию состава и структуры нановолокон, а также на долгосрочные испытания мембран в реальных условиях эксплуатации, чтобы оценить их деградацию с течением времени. Успех этой работы приближает эру водородной энергетики, делая ее более надежной, безопасной и доступной.
