Научная работа опубликована в The European Physical Journal Special Topics. Разработка ученых помогает лучше понять, как работают верхние конечности у птиц и у их искусственных аналогов. Это открывает дорогу созданию более совершенных биоморфных воздушных аппаратов. Например, летающих роботов, которые эффективно маневрируют внутри ограниченного пространства или среди препятствий. Там, где обычные дроны — винтовые или самолетного типа — не справятся.
Как пояснили авторы исследования, при разработке модели они использовали двумерный анализ взаимодействия между машущим крылом и окружающим воздушным потоком. Кроме того, для упрощения расчетов в модель были заложены ряд допущений.
В частности, массу крыльев приняли в качестве пренебрежимо малой и не учитывали. Вместе с тем вся система в целом была представлена в виде жесткого стержня, а ее аэродинамические силы рассчитывались на основе теории удара Ньютона. Согласно этой теории, во время столкновения с поверхностью крыла частиц воздуха они изменяют направление движения, при этом происходит передача импульса.
В результате таких построений ученые вывели формулу, которая отражает зависимость подъемной силы крыла, угла атаки, частоты взмахов и скорости полета. Также благодаря предложенной модели исследователи обнаружили, что максимальная подъемная сила достигается при определенных углах атаки (от 50° до 80°) и что увеличение частоты взмахов и скорости полета значительно усиливает подъемную силу.
«Наш анализ показал наличие оптимального угла атаки, который позволяет создать наибольшую подъемную силу при машущем полете. Этот вывод представляет собой важный параметр, который дает возможность при реализации интеллектуальных маневров в полете достичь максимальных эксплуатационных характеристик летательного аппарата», — объяснил один из разработчиков, заведующий лабораторией нейробиоморфных технологий МФТИ и заведующий кафедрой нейротехнологий ННГУ Виктор Казанцев.
Он отметил, что теоретические результаты были подтверждены с помощью экспериментальных полетов, для которых использовали одну из популярных лабораторных образцов орнитоптера. Его выбрали по принципу доступности, чтобы альтернативные группы ученых могли при необходимости перепроверить результаты исследований.
Размах крыльев этого дрона составляет 280 миллиметров, длина корпуса — 180, длина хвоста — 210, а угол атаки крыла при взмахе составляет порядка 10 градусов. Эксперименты продемонстрировали хорошее соответствие между вычислительной моделью и натурными измерениями.
Как отметили ученые, представленные алгоритмы требуют относительно несложных вычислений, что делает их удобными для использования на ранних этапах проектирования птицеподобных роботов. Это поможет улучшить конструкцию крыльев и повысить энергоэффективность орнитоптеров.
Исследование открывает новые пути для развития интеллектуальных систем в летающей биоморфной робототехнике. В том числе для внедрения алгоритмов нейросетей и машинного обучения.