Колумнисты

Синтез углеродных нанотрубок стал в три раза эффективнее

Ученым Сколтеха удалось улучшить самую широко используемую технологию производства одностенных углеродных нанотрубок (ОУНТ) — перспективного материала для изготовления солнечных батарей, светодиодов, гибкой и прозрачной электроники, умного текстиля, оборудования медицинской визуализации, детекторов токсичных газов, систем фильтрации. Исследователи ввели в реактор газообразный водород и монооксид углерода, что позволило увеличить количество получаемых на выходе нанотрубок почти втрое по сравнению с другими стимуляторами роста, причем без потери качества. До недавнего времени низкая производительность процесса не позволяла в полной мере реализовать потенциал этой производственной технологии, которая притом славилась высоким качеством конечного продукта.

Результаты исследования опубликованы в журнале Chemical Engineering Journal. По своей структуре (но не по технологии производства) углеродная нанотрубка представляет собой свернутый в бесшовный полый цилиндр лист графена — плоской сети из атомов углерода с геометрией пчелиных сот. Нанотрубки бывают однослойными или многослойными и имеют различные длину, диаметр и хиральность, то есть степень «смещения» сотового рисунка. Свойства углеродных нанотрубок значительно варьируются в зависимости от перечисленных параметров. Например, от хиральности зависит их электропроводность. Углеродные нанотрубки производят в виде порошка, тонких пленок, волокон или в других формах в зависимости от их предназначения.

Благодаря своим уникальным механическим, электрическим, оптическим и термическим свойствам, углеродные нанотрубки могут использоваться в различных изделиях и технологиях — от устойчивых к износу автомобильных шин и композитных материалов для лопастей ветряков до гибких сенсорных экранов и компонентов литий-ионных аккумуляторов. Одностенные углеродные нанотрубки в виде тонких пленок чаще всего применяются при создании гибких, эластичных, носимых и прозрачных электронных и оптических систем и устройств, таких как лазеры, светодиоды, дисплеи, солнечные элементы, кабели, транзисторы, механические, химические и световые датчики, фильтры для газов и жидкостей, антистатические покрытия и даже средства доставки лекарств.

Основной технологией производства пленочных ОУНТ и большинства других форм углеродных нанотрубок является химическое осаждение из газовой фазы (CVD), которое может выполняться несколькими способами — разными вариантами одного и того же базового технологического процесса. В качестве одного из вариантов технологии производства тонких пленок используют аэрозольный CVD, который позволяет получать нанотрубку в один этап.

Схематическое описание влияния водорода на процесс CVD-синтеза нанотрубок на основе монооксида углерода / © Илья Новиков и другие / Chemical Engineering Journal

В высокотемпературный реактор подается поток газообразного углеродного сырья — углеводородов, монооксида углерода, этанола и др., а также предшественника катализатора, чаще всего предшественника наночастиц железа, например ферроцена. Под воздействием высокой температуры предшественник катализатора распадается на каталитические наночастицы, и происходит разложение источника углерода. Углерод осаждается на поверхности частиц, образуется полусферическая фуллереновая «шапочка», и начинают формироваться нанотрубки. На выходе реактора нанотрубки одновременно фильтруются, образуя на поверхности фильтра 2D-сетку — тонкую пленку ОУНТ.

«Выбор источника углерода обусловлен требованиями, предъявляемыми к свойствам нанотрубок. Например, используя монооксид углерода, можно получить высококачественные нанотрубки, хотя и в весьма ограниченном количестве, но при этом пригодные для использования в оптике и электронике», — рассказывает один из авторов работы, старший преподаватель Сколтеха Дмитрий Красников.

Для решения этой проблемы исследователи обычно используют стимуляторы роста — дополнительные соединения, которые вводятся в CVD-реактор для ускорения роста нанотрубок и повышения каталитической активности и/или увеличения срока службы катализатора. Как правило, в качестве стимуляторов роста используют соединения серы, слабые окислители, такие как углекислый газ или вода, и дополнительные источники углерода. Однако у каждого из этих вариантов есть свои недостатки.

Схематическое описания влияния водорода при различных температурных режимах / © Илья Новиков и другие / Chemical Engineering Journal

«Существующие решения не обеспечивают существенного повышения эффективности синтеза на основе монооксида углерода. При использовании углекислого газа удавалось повысить производительность в два-три раза, а при использовании монооксида углерода даже добавление серы не давало желаемого результата», — отмечает ведущий автор исследования, выпускник аспирантуры Сколтеха Илья Новиков, недавно с успехом защитивший диссертацию по тематике синтеза нанотрубок.

«В качестве возможного стимулятора роста мы рассмотрели водород. В предыдущих работах было установлено, что ввод водорода в среду монооксида углерода может запустить дополнительную реакцию, в результате которой параллельно с реакцией Будуара [диспропорционирование монооксида углерода в углекислый газ: CO + CO → C + CO2 — гидрогенизация CO: CO + H2 → C + Н2О] образуется углерод. Мы пришли к выводу, что такое решение может сработать и в нашем случае».

Тщательно исследовав влияние водорода на эффективность синтеза ОУНТ, а также изучив свойства полученных на выходе нанотрубок, авторы обнаружили, что при концентрации водорода 10 объемных процентов производительность синтеза выросла в 15 раз без какого-либо ухудшения структурных характеристик и свойств нанотрубок как прозрачного проводника.

«Изучив технологии выращивания нанотрубок методами оптической спектроскопии и электронной микроскопии, а также детально исследовав термодинамику процесса, мы пришли к выводу, что такой замечательный результат удалось получить благодаря гидрогенизации монооксида углерода», — говорит руководитель Лаборатории наноматериалов Сколтеха, профессор Альберт Насибулин.

«Более того, чтобы в деталях объяснить влияние водорода на процесс, мы исследовали различные температурные режимы синтеза нанотрубок, а также различные уровни концентрации водорода», — добавляет Красников. «Неожиданно для себя мы обнаружили два разных феномена: на низкотемпературном режиме водород обеспечивает значительное повышение каталитической активности (активности участвующих в катализе частиц железа), тем самым значительно повышая количество трубок на выходе, а на высокотемпературном режиме он ускоряет рост нанотрубок, что приводит к получению более длинных нанотрубок с более высокой проводимостью пленки».

«Таким образом, в данном исследовании были решены сразу две важные проблемы. С одной стороны, значительно повышена эффективность синтеза, что существенно расширяет возможности применения аэрозольных CVD-процессов на основе монооксида углерода, приближая внедрение этого метода для производства нанотрубок в промышленных масштабах. С другой стороны, в этой работе нам удалось раскрыть принципиальные механизмы роста нанотрубок на основе диспропорционирования монооксида углерода, что чрезвычайно важно для более глубокого понимания процесса CVD-синтеза нанотрубок в целом», — отмечает в заключение профессор Насибулин.