Site icon Naked Science

В ИТМО придумали, как увеличить чувствительность сенсоров с левитирующими частицами

Ученые придумали, как увеличить чувствительность сенсоров с левитирующими частицами / © Mai-Linh Doan, ru.wikipedia.org

Исследование опубликовано в журнале Physical Review A. Левитирующие оптомеханические системы — устройства, которые позволяют исследовать одиночные нано- или микрочастицы в изоляции от внешних механических воздействий. Частицы буквально левитируют. Этот способ ученые используют для наиболее точного измерения силы, крутящего момента, ускорения, а также исследования фундаментальных законов и принципов физики, например, квантовых состояний и нелинейных процессов.

Этот подход исключает внешние шумы и ненужные воздействия на объект, и тем самым повышает чувствительность системы. Другими словами, нано- или микрочастица чутко улавливает и реагирует на малейшие внешние воздействия. Высокая чувствительность полезна для разных датчиков — например, регистрации высокочастотных гравитационных волн и метрологических исследований. В последние годы левитирующие системы начинают применяться в промышленности в виде компактных, точных и быстрых акселерометров.

Обычно ученые исследуют крошечные частицы, такие как атомарные ионы, так как их динамика описывается простыми уравнениями. При переходе к нано- и микрочастицам в силу вступают нелинейные процессы, при которых слабые внешние «возмущения» приводят к сильному отклику в движении микрочастиц.

«Чем больше энергии подается микрочастице, тем больше становится ее скорость. Но также возрастает нелинейная сила трения, из-за которой микрообъект теряет скорость. Получается замкнутый круг, неустойчивое равновесие. Если добавить слишком много энергии, случится фазовый переход: микрочастица начнет носиться, как заведенная игрушка. Ученые предпочитают избегать сложно описываемые нелинейные эффекты, поэтому изучают динамику крупных частиц в вакуумных условиях, где нет потери энергии. Но мы рассмотрели проблему с другой стороны: если есть нелинейный процесс, значит, в какой-то момент микрочастица станет очень чувствительной к внешним воздействиям. Вместо того, чтобы отказаться от сложностей, мы решили изучить их и в перспективе использовать для создания более чувствительного сенсора», — рассказал руководитель исследования, старший научный сотрудник лаборатории «Нелинейная оптика конденсированных сред» международного научно-образовательного центра физики наноструктур ИТМО Дмитрий Щербинин.

В прошлой работе исследователи ИТМО изучили нелинейную динамику одиночной микрочастицы, которая левитирует в воздухе в квадрупольной ловушке, и выделили два режима движения — линейный (колебания с малой амплитудой) и нелинейный (движение микрообъекта по ромбовидной траектории).

В новом исследовании ученые впервые рассмотрели, как именно происходит фазовый переход между линейным и нелинейным режимом движения, и нашли оптимальное состояние, при котором микрочастица становится крайне чувствительной к малым внешним возмущениям.

Разные режимы движения микрочастицы можно представить на примере студентов, которые пишут контрольную работу, и преподавателя, следящего за порядком. Пока преподаватель в аудитории, студенты ведут себя тихо. Это линейный режим с низкой амплитудой — частица колеблется вблизи центра ловушки с небольшой амплитудой. Когда преподаватель на что-то отвлекся, студенты начали передавать записки. В физическом мире линейный режим остался, но амплитуда движения немного увеличилась.

Если преподаватель покинул аудиторию, студенты стали шуметь и громко обсуждать задачи. Это нелинейный режим — амплитуда движения микрочастицы увеличилась на несколько порядков, и она начала двигаться по ромбовидной орбите с радиусом близким к размерам самой ловушки. Между линейным и нелинейным режимами случилось внешнее возмущение (преподавателя вызвал директор), которое привело к постепенному изменению режима — фазовому переходу.

«Мы исследовали поведение левитирующей микросферы диоксида кремния на границе фазового перехода. Мы определили четыре характерных динамических состояния движения и выяснили, что микрообъект наиболее чувствителен вблизи фазового перехода, так как его движение становится неустойчивым и резонансным. В спектре колебаний появляются новые частоты, амплитуда которых быстро усиливается.

Поэтому даже малейшее внешнее воздействие заметно отражается на амплитуде движения и на спектре частот, и из-за этого микрочастица становится очень чувствительной. Мы показали, что даже небольшое воздействие на систему с использованием лазерного излучения может столкнуть систему в нелинейный режим», — объяснил первый автор исследования, младший научный сотрудник лаборатории «Нелинейная оптика конденсированных сред» международного научно-образовательного центра физики наноструктур ИТМО Вадим Рыбин.

По словам исследователей ИТМО, для любой микрочастицы сферической формы с собственным электрическим зарядом можно рассчитать параметры, которые приведут ее к фазовому переходу и придадут ей повышенную чувствительность. Также можно измерить любое внешнее воздействие вне зависимости от его природы — электрическое, магнитное, оптическое и гравитационное поле. На основе эффекта, впервые рассмотренного исследователями ИТМО, возможно создать универсальный сенсор с высокой чувствительностью. Его можно будет использовать для точной геологоразведки, определения сейсмоактивности и местоположения судов, где недостаточно хорошо работает GPS-навигация, например в Арктике.

Сейчас физики ИТМО продемонстрировали фазовый переход микрочастицы в эксперименте. В дальнейшем они планируют разработать математическую модель, которая будет предсказывать и описывать возникающие в работе эффекты, и на ее основе создать универсальный сенсор для калибровки чувствительности измерительных приборов на разных типах взаимодействия.

Исследование поддержано грантом Фонда развития теоретической физики и математики «БАЗИС».

Exit mobile version