Атомная электростанция (АЭС) — комплекс, где производят электричество с помощью особого топлива — урана. Этот тяжелый металл обладает уникальным свойством: при делении его атомов выделяется колоссальная энергия. Если говорить просто, АЭС работает как мощный паровой котел, где пар создается не от сжигания угля или газа, а за счет тепла от управляемой ядерной реакции. По данным 2025 года, в мире действует около 439 таких объектов.
Центральный элемент любой АЭС — реактор — высокотехнологичная «печь», где и происходит этот процесс. Внутри него в строго контролируемых условиях расщепляются ядра урана, выделяя огромное количество мощности. Одна из важнейших задач для безопасной и эффективной работы атомной станции — надежный контроль температуры. От точности этих измерений зависит очень многое: и стабильность энергоснабжения целых городов, и предотвращение аварийных ситуаций. Однако именно здесь возникает серьезная техническая проблема.
Сегодня на предприятиях ядерной энергетики для мониторинга теплового режима используют некоторые виды датчиков, обладающие рядом недостатков. Обычные термопары (два соединенных провода из разных металлов, которые создают слабое электрическое напряжение при нагреве) в защитных толстых металлических оболочках постепенно выходят из строя из-за радиации, и их приходится часто менять. Более точные резистивные датчики (устройства, где тонкий металлический проводок меняет свое токовое сопротивление при нагреве или охлаждении) страдают от электромагнитных помех — их показания искажаются. Современные волоконно-оптические системы (измеряют степень нагрева с помощью инфракрасного излучения) в меньшей степени подвержены электромагнитным помехам, однако применяемое органическое защитно-упрочняющее покрытие датчиков разрушается при длительном нагреве, что приводит в итоге к ложным показаниям.
Эти технические недостатки напрямую влияют на работу всей атомной станции. Из-за неточных тепловых показаний могут возникать серьезные проблемы: реактор не может работать на полную мощность, что снижает выработку электроэнергии. Оборудование быстрее изнашивается из-за незафиксированных перепадов температуры, требуя ремонта, а частые замены вышедших из строя датчиков ведут к постоянным остановкам работы.
Именно для решения этих проблем ученые Пермского Политеха создали новый термометр, способный работать в экстремальных условиях атомного реактора. Их разработка обладает всеми преимуществами волоконно-оптических систем, однако в отличие от существующих аналогов она способна функционировать в условиях повышенных температур длительное время. Это позволяет вести точный контроль тепловых режимов даже в активной зоне реактора, обеспечивая безопасную и эффективную работу атомной станции. На изобретение получен патент. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет-2030».
Главное преимущество данного термометра — это новая конструкция чувствительного элемента на основе оптического волокна, внутри которого созданы микроскопические газовые полости, заполненные кислородом под давлением, а вместо традиционного органического защитно-упрочняющего покрытия используется металлическая оболочка. Совокупность таких полостей (размер каждой составляет порядка трех-шести микрометров) представляет из себя высокочувствительный датчик, изменяющийся под действием тепла оптические свойства отражаемого излучения, регистрируемого измерительной системой.
Ключевым улучшением стало применение разработанной методики на основе нелинейного оптического эффекта (разряда), с помощью которого формируется чувствительный элемент датчика. В ней задействовано вводимое в торец оптического волокна высокоинтенсивное лазерное излучение, а это означает, что такие чувствительные элементы можно формировать абсолютно во всех известных типах волокон с любым видом защитно-упрочняющих покрытий.
— В зависимости от выбранного высокотемпературного материала защитно-упрочняющего покрытия — алюминия, меди, никеля или их сплавов — термометр может стабильно работать в диапазоне температур от -196°C вплоть до +1000°C, тогда как существующие аналоги выдерживают кратковременно не более 400°C. Также другим важным усовершенствованием стало внедрение оптического усилителя в измерительную цепь, что позволило использовать источники света малой мощности, полностью исключив эффект самонагрева датчика, — рассказал Владимир Первадчук, заведующий кафедрой «Прикладная математика» ПНИПУ, директор подготовительных курсов, доктор технических наук, профессор.
Говоря простым языком, в конструкцию термометра встроен «фонарик», посылающий луч света по тонкому стеклянному волокну. Вблизи конца волокна располагаются микроскопические пузырьки с газом, которые и представляют из себя чувствительный к температуре элемент. Свет, взаимодействуя с этими пузырьками, отражается, проходит через «усилитель» — специальную лупу, — и попадает в измерительную систему. Когда такой чувствительный элемент начинает нагреваться во внешней среде, то изменяются свойства отраженного от пузырьков света. Компьютер анализирует эти изменения и преобразует их в температурные показания.
Следовательно, такой термометр не подвержен влиянию электромагнитных помех, устойчив к радиационному воздействию, обладает в три-четыре раза более широким диапазоном измеряемой температуры и не требует частой замены. К тому же, его также можно использовать в металлургии для контроля расплавов, химической промышленности для агрессивных сред и энергетике для мониторинга оборудования.
Применение данной разработки позволит сократить расходы на обслуживание и повысить эффективность работы энергетических объектов за счет более точного контроля тепловых режимов. Это решение открывает новые возможности для регулирования нагрева в активных зонах ядерных реакторов, металлургических печах и химических производствах, где ранее невозможно было обеспечить надежные и корректные измерения.
