Уральские ученые применили новый метод анализа материала для костных имплантатов. С его помощью возможно регулировать скорость растворения имплантата в зоне повреждения кости.
Описание экспериментов и результаты исследования опубликованы в журнале Ceramics International. Синтетический биоактивный гидроксиапатит (ГАП) — это материал, который используется для изготовления протезов костей и имплантатов, способствующих нарастанию новой костной ткани. Он находит широкое применение в травматологии, стоматологии, челюстно-лицевой хирургии, косметологии.
Ранее ученые выяснили, что добавление монооксида титана придает материалу прочность и сохраняет способность ГАП встраиваться в организм, не вызывая побочных эффектов. Однако получившийся нанокомпозит (многокомпонентный наноматериал) требует подробного изучения взаимодействия добавки и его матрицы на всех этапах синтеза, а также влияния этого взаимодействия на свойства конечного продукта.
Это необходимо для улучшения процесса реконструкции поврежденных костей. Чем лучше имплантат связывается с костной тканью, тем эффективнее заживление поврежденных участков. «Благодаря исследованию термохимических и физико-химических свойств наноматериала мы можем достичь некоторых желаемых свойств имплантата. Например, скорость растворения имплантационного материала в зоне костного дефекта. Ее можно регулировать путем изменения содержания фосфатов кальция в нанокомпозите, которое, как мы показали, зависит от стехиометрии добавок монооксида титана.
Это создаст условия для нормального протекания процесса регенерации и структурной перестройки кости в зоне контакта с имплантатом», — поясняет ведущий научный сотрудник Института химии твердого тела УрО РАН, доцент кафедры физических методов и приборов контроля качества УрФУ Светлана Ремпель. Для изучения свойств нанокомпозита ученые впервые применили метод синхротронной рентгеновской дифракции. Синхротронное излучение показало наибольшую точность и эффективность анализа материала в режиме реального времени.
«С помощью этого метода мы изучили изменения свойств наноматериала под влиянием разных температур — от температуры окружающей среды до 900 градусов Цельсия. В отличие от других методов, in situ исследование на источнике синхротронного излучения позволило наиболее точно определить температуры образования различных фаз при нагреве и охлаждении нанокомпозитов, получить информацию о размере частиц, убедиться, что все компоненты биосовместимы, а также найти косвенные доказательства частичной замены кальция на титан в составе гидроксиапатита», — рассказывает Светлана Ремпель.
Отметим, над созданием и изучением биосовместимого материала с содержанием гидроксиапатита и монооксида титана работали ученые Уральского федерального университета и Уральского отделения РАН (Екатеринбург) совместно с коллегами из Грацского технического университета (Австрия) и Сибирского отделения РАН (Новосибирск). Разработка запатентована. Эксперимент синхротронного облучения материала проводился в Сибирском центре синхротронного излучения на базе Новосибирского ускорительного комплекса ВЭПП-4 – ВЭПП-2000. Исследование поддержал Российский фонд фундаментальных исследований.