Ученые Научно-исследовательского радиофизического института (НИРФИ) ННГУ имени Н. И. Лобачевского разработали новый способ определения концентрации электронов в Е-слое ионосферы Земли. Это один из основных параметров, определяющих процесс распространения радиоволн. Сведения об электронной концентрации позволяют прогнозировать условия распространения радиоволн, анализировать эффекты воздействия мощного радиоизлучения на ионосферу Земли и изучать ее характеристики в динамике.
Ионосфера Земли / ©Getty images
Исследования проходили при поддержке Российского фонда фундаментальных исследований и Российского научного фонда. Новый способ определения концентрации электронов реализован на нагревном стенде СУРА – многофункциональном комплексе для исследования околоземного и космического пространства. Объект входит в число уникальных научных установок Российской Федерации.
Нагревный стенд, состоящий из трех коротковолновых передатчиков и фазированной антенной решетки из 144 элементов, излучает в зенит мощные радиоволны. Под их воздействием в ионосфере в интервале высот от 50-60 до 250-350 километров образуются искусственные периодические неоднородности (ИПН) ионосферной плазмы, то есть неоднородности температуры и концентрации электронов.
Ученые предложили новую формулу, которая определяет электронную концентрацию по измерениям характеристик радиоволн, рассеянных этими неоднородностями в ионосферной плазме. Разработка позволяет определить концентрацию электронов в области 90-130 километров, так называемом, E-слое ионосферы. Эта область высот наименее доступна для других методов.
Один из авторов исследования, ведущий научный сотрудник отдела распространения радиоволн и дистанционного зондирования Наталия Бахметьева поясняет: «Разработанный нами способ дает высокую точность измерений и высотно-временное разрешение. Погрешность определения электронной концентрации составляет не более 5-10 процентов, а например, погрешность широко используемых при анализе распространения радиоволн моделей ионосферы может достигать 30 процентов.
Временное разрешение способа составляет 10-15 секунд, разрешение по высоте порядка одного километра. Это означает, что каждые 10-15 секунд мы получаем высотный профиль электронной концентрации с шагом по высоте один километр. Это очень хорошие показатели».
В отличие от верхних слоев ионосферы, нижние слои – в интервале высот 50-150 километров – не так подробно исследованы. Сегодня изучение этой части атмосферы – одна из главных задач физики ионосферы и космической плазмы. Это переходная область, где происходит взаимодействие термосферы, которая регулируется солнечной активностью, и тропосферы, формирующей погоду и климат. Движения нейтрального газа на этих высотах могут искажать траектории ракет. Здесь происходит сильное торможение космических аппаратов, которые, в свою очередь, также возмущают естественное состояние ионосферы.
Ученые Университета Лобачевского получили патент на изобретение «Способ определения высотного профиля электронной концентрации» в 2021 году. Эта разработка продолжает цикл проектов НИРФИ ННГУ по определению параметров ионосферной плазмы с помощью искусственных периодических неоднородностей (ИПН), создаваемых мощным радиоизлучением стенда СУРА. Нижегородские ученые открыли это физическое явление в конце 1970-х годов.
С тех пор исследования с использованием ИПН продолжают развиваться. В числе проектов последних лет: исследования атмосферной турбулентности в области высот 60-90 километров; разработка способа исследования ионного состава в спорадическом слое E – слое с повышенной электронной концентрацией, способ исследования диффузионных явлений в нижней ионосфере и другие. Эти исследования тоже имеют патенты.
В 2014 и 2018 годах сотрудники НИРФИ и радиофизического факультета выполнили исследования ионосферы методом создания искусственных периодических неоднородностей на нагревном стенде HAARP (США) и в радиообсерватории Аресибо (Пуэрто-Рико).
Напомним, что стенд СУРА – единственный в мире исследовательский центр по изучению взаимодействия мощных радиоволн с ионосферной и околоземной плазмой, расположенный в средних широтах. В 2020 году при поддержке Минобрнауки стартовал проект по модернизации установки. Модернизация будет способствовать безаварийной работе нагревного стенда СУРА со стабильными параметрами излучения мощных радиоволн, а также комплексному применению разработанных способов мониторинга ионосферы.