Site icon Naked Science

Кубиты научили работать быстрее без потерь точности

Рисунок 1. Представление созданного устройства. На панели (a) изображен общий вид двухкубитной системы, детальное рассмотрение его ключевых наноразмерных элементов на панели (b), его упрощенная электрическая схема (c) и принцип работы трехмодового элемента связи (d) — как меняются его энергетические уровни каплера в зависимости от внешнего напряжения, приложенного к его СКВИДу / © Elena Yu et al, Physical Review Applied

Результаты исследования опубликованы в журнале Physical Review Applied.

Кубиты — это квантовые аналоги битов, способные находиться не только в состояниях 0 или 1, но и в их суперпозиции. Для выполнения вычислений кубиты должны взаимодействовать друг с другом, вступая в своего рода диалог. Этот диалог управляется с помощью квантовых вентилей — аналогов логических операций в классических компьютерах. Создание быстрых и точных двухкубитных вентилей является одной из самых сложных задач в квантовых технологиях. Проблема в том, что кубиты — чрезвычайно хрупкие объекты.

Любое нежелательное взаимодействие, даже самое незначительное, может привести к ошибкам в вычислениях. Это явление похоже на эхо в концертном зале: если один инструмент звучит слишком громко или не вовремя, он мешает другим, и гармония нарушается. В мире сверхпроводниковых квантовых процессоров одной из таких помех является так называемое остаточное ZZ-взаимодействие, которое присутствует тогда, когда кубиты должны быть полностью изолированы друг от друга.

Именно эту проблему и взялся решить коллектив российских физиков. Их цель состояла в том, чтобы спроектировать 8-кубитный процессор. Для этого исследователи разработали новую архитектуру, состоящую из двух сверхпроводниковых трансмонных кубитов и соединяющего их инновационного трехмодового элемента связи, или каплера. Этот каплер, выполненный в виде копланарного волновода со встроенным сверхпроводящим квантовым интерферометром (СКВИД) в центре, стал сердцем устройства. СКВИД, по сути, является перестраиваемым контуром, чувствительным к подаваемому напряжению, что позволяет использовать его как сверхточную «ручку настройки» для управления силой взаимодействия между кубитами.

Рисунок 2. Схема экспериментальной установки / © Elena Yu et al., Physical Review Applied.

Суть эксперимента заключалась в том, чтобы сравнить, как меняется населенность (и, соответственно, результат измерения) кубита B в зависимости от того, в каком состоянии находится кубит A. Разница частот осцилляций двух этих измерений и есть искомая сила ZZ-взаимодействия.

В ходе эксперимента ученые продемонстрировали, что их архитектура позволяет выполнять нативную двухкубитную операцию CZ (управляемое Z) за короткое время — всего 60 наносекунд. Точность, или как говорят физики, достоверность операции, превысила 98%, что является высоким показателем для такой длительности.

Елена Егорова, выпускник Физтех-школы физики и исследований им. Ландау МФТИ, рассказала: «Основная трудность при создании многокубитных процессоров — это баланс между сильным взаимодействием, необходимым для быстрых операций, и слабым остаточным взаимодействием в режиме ожидания. Предложенный трехмодовый каплер позволяет добиться широкого диапазона перестройки связи между кубитами, при этом он значительно менее чувствителен к неизбежным погрешностям параметров при изготовлении чем большинство других существующих подходов. Описанная двухкубитная система является составной частью сверхпроводникового 8-кубитного процессора, на котором был выполнен ряд успешных экспериментов, включая алгоритм детектирования квантовых ошибок».

Ключевая особенность предложенного соединителя заключается в его устойчивости к несовершенствам производства. Многие предыдущие конструкции требовали создания джозефсоновских переходов — ключевых элементов сверхпроводниковых цепей — с очень точным и контролируемым различием в параметрах, что является сложной технологической задачей. Новая трехмодовая схема не имеет такой строгой зависимости от асимметрии переходов, что значительно упрощает ее воспроизводимое изготовление и открывает дорогу к созданию более крупных и стабильных квантовых процессоров.

Ученые не только создали и измерили устройство, но и построили его полную численную модель, которая показала отличное совпадение с экспериментальными данными. Моделирование также предсказало, что при дальнейшей оптимизации параметров и процессов изготовления точность двухкубитных операций на основе этого элемента может быть доведена до 99,97%. Разработка была использована для создания 8-кубитного квантового процессора.

Exit mobile version