Шум, создаваемый техногенными объектами, уже давно считается серьезной глобальной проблемой. Безопасным для слуха в течение длительного времени считается уровень до 55-60 децибел, что сравнимо с тихим офисом. Регулярное воздействие громкостью свыше 85 децибел (как на оживленной автодороге) в течение восьми часов создает серьезные риски. По данным ВОЗ, такой уровень звукового давления ведет к повышенным рискам развития сердечно-сосудистых заболеваний, стресса и нарушений сна.
Особую актуальность задача снижения шума приобретает в авиационной отрасли. Строгие международные нормы, устанавливающие предельные уровни звука для зон вблизи аэропортов, сдерживают их территориальное расширение, увеличение количества взлет-посадочных операций и ввод в эксплуатацию новых рейсов. Кроме того, высокий уровень шума внутри салона лайнера (порядка 75-85 децибел) создает хронический дискомфорт для пассажиров, провоцируя повышенную утомляемость и стресс. Для членов экипажа, ежедневно работающих в таких условиях, это воздействие перерастает в устойчивый профессиональный риск для здоровья.
Ключевым элементом систем шумоподавления, особенно в двигателях, являются резонансные (звукопоглощающие)панели. Их эффективность напрямую зависит от точности изготовления ячеек. Любые производственные дефекты, даже малейшие неровности, отклонения в размерах или микрозазоры, приводят к резкому снижению их акустических свойств.
Существующие технологии производства таких панелей не позволяют изготавливать их с гарантированной точностью. Для эффективного подавления шума необходимы неоднородные структуры с разной геометрией и объемом. Однако их производство через ручную или автоматизированную установку отдельных деталей оказывается ненадежным и слишком дорогим для широкого применения. Кроме того, чемсложнее конструкция, тем больше требуется операций по сборке, и каждая из них может привести к ряду дефектов, таких как расслоение, изменение формы ячеек, нарушение процента перфорации.
Еще одно ограничение существующих технологий — вес самой конструкции. Звукопоглощающие панели часто имеют значительную массу, поскольку для эффективной работы требуют применения двух и более слоев звукопоглощающих заполнителей (с ячейками постоянной формы и объема). В авиации любое увеличение веса приводит не только к повышенному расходу топлива, но и к сокращению дальности полета.
Ученые Пермского Политеха разработали уникальный способ изготовления однослойной широкополосной звукопоглощающей конструкции. Он основан на формировании сложной внутренней геометрии панелей, что позволяет снизить шум в диапазоне рабочих частот авиационного двигателя и уменьшить вес панелей в 1,5 раза по сравнению с аналогами. На изобретение выдан патент.
В основе новой технологии лежит создание разновысотной матрицы — специальной пресс-формы. Она работает по принципу точного штампа, задающего внутреннюю геометрию звукопоглощающих панелей. Для ее изготовления сначала ученые создали цифровую 3D-модель, в которой задали все параметры: высоту, форму и расположение каждого элемента. Далее с помощью промышленной 3D-печати из металла или композита они изготовили готовый образец. Поверхность пресс-формы представляет собой рельеф из выступов разной высоты, каждый из которых будет формировать определенную ячейку конструкции.
Процесс производства самих панелей также состоит из нескольких этапов. Сначала подготовленную пресс-форму размещают на ровной поверхности и на ее выступы укладывают обычный сотовый заполнитель, например, из алюминия или полимера. Важно, что все ячейки имеют разную глубину и объем. Там, где выступ высокий, почти не остается свободного места, а где он низкий, образуется глубокая полость. Таким образом, уже на этом этапе автоматически формируется основа с разными параметрами, которая станет каркасом для будущих панелей шумоподавляющей конструкции.
Образовавшиеся в ячейках полости заполняют специальными акустическими материалами. В зависимости от требуемых свойств используют разные составы: от жестких полимерных смол до мягких вязких паст или пористых наполнителей. Материал вносят с небольшим избытком, после чего заготовку подвергают термообработке. В конце излишки на панелях срезают, получая идеально ровную ячейку строго заданной формы.
Ключевое преимущество предложенного способа состоит в том, что вся сложная внутренняя структура формируется не вручную, а за счет контакта с формой. Раньше для создания ячеек разной глубины в каждую приходилось вставлять отдельную заглушку. Новая технология исключает сотни таких операций, что снижает и риск брака.
— Для объективной оценки эффективности новой конструкции мы провели лабораторные испытания. Опытные образцы панелей, изготовленные по новому методу, поместили в акустическую трубу — стандартный стенд для измерения звукопоглощающих свойств материалов. Далее на них направили звуковые волны разной частоты и с помощью специальных микрофонов зафиксировали уровни отраженной энергии. На основе собранных данных мы вычислили коэффициент звукопоглощения в определенном диапазоне — ключевой показатель эффективности. Для наглядности полученные результаты были представлены в виде графика, который показывает, как панель справляется с шумом на разных частотах, — рассказал Павел Писарев, кандидат технических наук, заведующий научно-исследовательской лабораторией пространственно-армированных композиционных материалов, доцент кафедры «Механика композиционных материалов и конструкций» ПНИПУ.
Проведенные испытания показали два ключевых преимущества новой технологии. Во-первых, она позволила добиться значительного снижения массы конструкции. За счет отказа от многослойных ЗПК, которые классически используются в настоящее время в двигателях, а также благодаря рациональной внутренней структуре, вес панели был уменьшен в 1,5 раза по сравнению с существующими аналогами. Для авиационной отрасли, где каждый килограмм напрямую влияет на топливную экономичность, этот показатель имеет ключевое значение.
— Что касается звукопоглощения, испытания подтвердили, что новая панель — более «широкополосная», то есть она эффективно подавляет шум не на отдельных частотах, а в целом диапазоне. При этом количественные замеры показали общий рост акустической эффективности как минимум до 12% — значимый результат в этой области. Можно сказать, что разработанный способ предлагает готовое решение для преодоления существующих ограничений в производстве современных звукопоглощающих панелей. Переход от трудоемкой сборки к использованию 3D-матрицы позволяет создавать конструкции с очень точной и сложной геометрией, что ранее было экономически невыгодно, — дополнила Карина Ахунзянова, младший научный сотрудник кафедры «Механика композиционных материалов и конструкций» ПНИПУ.
Области применения технологии охватывают все отрасли, где требуется эффективное шумоподавление. В первую очередь, в авиации такие панели можно ставить в двигателях и салонах самолетов, чтобы снизить шум и соответствовать строгим международным нормам. Они также подойдут для поездов и автомобилей — как для тихих моторов, так и для шумозащитных экранов у дорог. Кроме того, эту разработку можно использовать в строительстве и на заводах, чтобы снизить шум от промышленного оборудования.
