Site icon Naked Science

Цифровой двойник почвы покажет, где будет наводнение, а где засуха

Ученые проверили работоспособность цифрового двойника почвы / © Md. Hasanuzzaman Himel, unsplash.com

Результаты опубликованы в журнале Soil and Tillage Research. Авторы показали, что разработка и применение цифрового двойника почвы открывает новые возможности для неинвазивного исследования и прогнозирования ее свойств. Этот подход позволит предотвращать эрозии и наводнения, прогнозировать запасы воды в различных сценариях выпадения осадков, а также учитывать влияние изменения климата.

«Можно пойти и дальше — на основе разрабатываемых методик можно создавать дизайнерские почвы с идеальными физическими свойствами для определенных культур и условий окружающей среды»,— добавил Кирилл Герке, директор по науке Центра вычислительной физики.

Традиционные подходы к изучению почвы, такие как отбор образцов для измерения в лаборатории, являются разрушающими, медленными и потенциально вносят ошибки из-за проблем измерительных протоколов. Более того, экспериментальный метод ограничивает движение воды в почве, блокируя боковые потоки, и не позволяет получить полную информацию о фильтрационных характеристиках пористой среды. Ученые из ЦВФ МФТИ с коллегами предлагают принципиально другой подход к изучению свойств почвы, который позволит исследовать ее виртуально с более полной информацией о свойствах.

Очень важен параметр насыщенной гидравлической проводимости почвы — величина, показывающая, как быстро вода может просачиваться и распределяться по почве. Этот параметр позволят определять продуктивность почвы для сельского хозяйства, риски эрозии и наводнения и способность почвы справляться с экологическими последствиями.

Общая схема сравнительной части исследования / © Kirill M. Gerke et al., Soil and Tillage Research

Ученые создали 3D-структуру на уровне пор для трех образцов почвы Суздальского ополья с помощью изображений рентгеновской микротомографии. Они применили три принципиально разных метода моделирования для расчета гидравлической проводимости. Несмотря на то что методы имеют различные фундаментальные подходы, результаты моделирования совпадают по порядку величины с экспериментом. Что подтвердило надежность цифрового моделирования.

Исследователи сравнивали расчетные и экспериментальные значения насыщенной гидравлической проводимости. Модельные значения оказались в 2–10 раз больше полевых. Ученые объясняют, что различия обусловлены ограничениями рентгеновской компьютерной томографии, а также сложностями в создании одинаковых граничных условий в численном и полевом экспериментах. Цифровой подход открыл новые задачи в выявлении причин расхождения, такие как необходимость учета разных масштабов в структуре почвы, выявление органики, расположенной в порах почвы. Благодаря моделированию впервые удалось подчеркнуть анизотропность почвы — ее способность проводить воду по-разному в различных направлениях. Этот эффект сложно исследовать экспериментальными методами.

«Безусловно, как у и любой модели, у нашей тоже есть ограничения. Мы используем статические данные о структуре полученные с помощью компьютерной томографии при определенном насыщении почвы водой. При изменении влажности структура, в которой происходит фильтрация, меняется. Для учета влияния этих факторов нам необходимо описать динамику структуры при изменении влажности. Совместив две модели: модель фильтрации и динамики структуры, мы сможем впервые детально описать процессы в реальных природных объектах, что будет значительным шагом вперед»,— добавил Кирилл Герке.

Исследование демонстрирует потенциал моделирования как надежного и неразрушающего инструмента для исследования почвы.

В работе участвовали ученые из Центра вычислительной физики МФТИ, Института физики Земли РАН, Университета короля Абдаллы (Саудовская Аравия), МГУ, Лейбниц-центра ZALF (Германия), Института почвоведения имени Докучаева и CSIRO (Австралия).

Exit mobile version