Колумнисты

Российские ученые изучили биомеханические свойства человеческой кожи

По данным ВОЗ, ожоги занимают третье место по частоте среди прочих травм. В России ежегодно регистрируют более 800 тысяч таких случаев. При глубоких повреждениях один из способов восстановления — трансплантация кожи. Такую операцию проводят при травмах и ранениях, удалении опухолей и в косметических целях. Лечение, разработка и подбор подходящих материалов для замены тканей кожи требуют детального изучения ее биомеханических характеристик. Ученые Российского университета медицины, НИИ нормальной физиологии имени П. К. Анохина, Пермского Политеха и ПГМУ имени академика Е.А. Вагнера провели исследование свойств кожи человека и существующих моделей для их описания. Это позволит разработать более эффективные методы лечения и трансплантации.

Исследования опубликованы в «Российском журнале биомеханики». Исследование выполнено при финансовой поддержке Правительства Пермского края в рамках научного проекта «Разработка бионического протеза уха на основе интеллектуальных и медицинских 3D-технологий» и реализации программы стратегического академического лидерства «Приоритет-2030».

Кожа – первая линия защиты нашего тела от внешней среды. Она контролирует многие виды обмена между нашим внутренним и внешним миром. Общая поверхность кожи у взрослого человека составляет до двух квадратных метров, а объем – примерно 1/7 часть от всего тела.

Ученые Российского университета медицины, НИИ им. П.К. Анохина, Пермского Политеха и ПГМУ им. академика Е.А. Вагнера провели исследование по определению параметров биомеханических свойств кожи человека. Для этого использовали данные механических испытаний образцов на растяжение, а затем сравнивали полученные результаты с различными математическими моделями, чтобы выявить наиболее точную из них.

«Мы использовали образцы кожи спины семи пациентов – трех мужчин и четырех женщин, в возрасте 89±6 лет без сопутствующих прижизненных заболеваний. Эксперименты на растяжение проводились на универсальной машине для механических испытаний. Образцы зажимались с помощью специально разработанных противоскользящих захватов. Кожу вырезали из тела скальпелем. Каждый экземпляр имел эпидермис, а подлежащую жировую ткань удаляли. Толщина подготовленной кожи в среднем составляла 2,56 миллиметров», – поделился доктор медицинских наук, заведующий кафедрой цифровой стоматологии Российского университета медицины, профессор Сергей Арутюнов.

«Испытывали образцы нескольких типов относительно линий Лангера. Это естественные линии на коже, которые отражают направление ориентации коллагеновых волокон в дерме. Наиболее «мягкими» по параметрам оказались образцы тканей, вырезанные из кожного покрова перпендикулярно линиям Лангера. Больший модуль упругости продемонстрировали образцы, расположенные косо к таким линиям. При тестировании оказалось, что кожа «жестче» параллельно им по сравнению с поперечным направлением в 3,5 раза. Таким образом упругие свойства тканей кожи спины человека, исследованные in vitro, неоднородны и анизотропны», – дополнил кандидат физико-математических наук, доцент кафедры «Вычислительная математика, механика и биомеханика» Пермского Политеха Владислав Никитин.

Важным этапом исследования было сравнение существующих моделей для описания поведения кожи и установление различных параметров, которые входят в них. Ученые проанализировали два типа моделей: упругие и гиперупругие.

«В упругих моделях мы рассмотрели экспоненциальную, линейную и билинейную с двумя модулями. Наименьшее отклонение от экспериментальных значений имеет экспоненциальная независимо от локализации образцов и их направленности. Поскольку в организме человека большинство мягких тканей считаются гиперупругими, мы также исследовали модели этого класса. Для оценки механического поведения кожной ткани лучше всего подошли полиномиальная и модель Веронда–Вестманн», – рассказал доктор биологических наук, профессор кафедры нормальной физиологии и медицинской физики Российского университета медицины Сергей Муслов.

Ученые Пермского Политеха совместно с коллегами изучили свойства кожи человека, получили параметры для различных математических моделей и установили, какие из них лучше описывают поведение материала.

«Полученные результаты станут ключом к разработке эффективных методов лечения поврежденных тканей организма при различных травмах и заболеваниях. А также будут использованы при создании новых типов и модификаций силиконовых материалов для изготовления протезов, отвечающих требованиям естественности и функциональности», – поделилась Наталия Асташина, доктор медицинских наук, заведующая кафедрой ортопедической стоматологии ПГМУ имени академика Е.А. Вагнера.