Климат

В полярном морском льду нашли источник тепла

Морской лед регулирует теплообмен между атмосферой и океаном в полярных регионах. Ключевую роль играет теплопроводность льда — это важный параметр в климатических моделях. Однако его сложно вычислить из-за особенной микроструктуры льда, его чувствительности к температуре, солености. В новой работе ученые применили ряд математических методов для расчета теплопроводности. В перспективе это поможет улучшить климатические модели и найдет применение в других областях.

Последние годы морской лед находится в центре внимания климатологов. Когда выяснилось, что среднегодовые температуры на планете растут, а в полярных регионах потепление идет быстрее, чем в других местах, то система «атмосфера — океанская вода — морской лед» приобрела особое значение. Для человечества жизненно важно понимать, как она работает.

Морской лед — это изолирующее покрытие океана, отделяющее его от атмосферы. Оно отражает солнечный свет и управляет теплообменом между воздухом и водой. Морской лед участвует в системе обратной связи: чем больше его площадь, тем больше солнечного излучения он отражает и тем ниже температура воздуха. В последние десятилетия площадь морского льда заметно сократилась, что привело к усилению парникового эффекта со всеми вытекающими последствиями.

«Морской лед покрывает примерно 15 процентов поверхности океана в холодные сезоны, во время максимумов. Это тонкий слой на границе атмосферы и океана, влияющий на теплообмен между ними», — пояснила Ноа Крайцман, старший преподаватель прикладной математики в Университет Маккуори (Австралия), руководитель работы, итоги которой опубликованы в журнале Proceedings of the Royal Society A.

Морской лед в Арктике / © Татьяна Пичугина

По словам Крайцман, структура морского льда, особенно его высокая чувствительность к температуре и солености, такова, что измерить и смоделировать его свойства, включая теплопроводность, крайне сложно. Когда температура воздуха в океане опускается ниже минус 30 градусов Цельсия, температура морской воды все еще остается минус два градуса. Это создает большую разницу температур, подчеркнула исследовательница: вода начинает замерзать сверху вниз. Процесс идет быстро, соль вытесняется. Остается матрица чистого водного льда с включениями пузырьков воздуха и карманами очень соленого раствора — рассола.

Эти капли плотного рассола тяжелее, чем пресная океанская вода. В результате возникает конвекция внутри льда, появляются крупные поры, в которых циркулируют рассолы. Движение жидких рассолов внутри морского льда теоретически может усилить перенос тепла при повышении температур. Впервые это предположил Джо Тродал из Университета Виктории в Веллингтоне (Новая Зеландия), который экспериментально измерил теплопроводность природного морского льда в Антарктиде в полевой сезон в 1999 году. Теперь это доказали математически.

Ученые модернизировали уравнение переноса для пористого композитного материала с циркулирующими в нем рассолами, каковым выступает морской лед. Они показали, что конвективные потоки внутри льда могут повысить эффективную теплопроводность в два-три раза. Это касается нижней части слоя, более теплой и проницаемой. Зимой это нижние 10 сантиметров, летом процесс может затрагивать всю толщу. Авторы исследования намерены проверить свои результаты с помощью полевых данных и включить их в климатические модели.