С помощью ГМ-клеток кишечной палочки ученым впервые удалось синтезировать гигантские полимеры мышечного белка титина и сформировать из них прочные волокна.
Работа мускулатуры требует участия множества белков: одни нужны для выполнения основной функции, другие обеспечивают эту работу. Сокращение поперечно-полосатых мышц происходит за счет скольжения нитей актина между нитями миозина. А структурную опору этой системе обеспечивает белок титин. Он считается самым большим из известных белков и может набирать до трех миллионов атомных единиц массы (примерно равных массе атома водорода).
Титин в десятки раз крупнее средней величины белков у бактерий: это заставляет сомневаться в том, что его можно производить искусственно, в клетках ГМ-микробов. Тем не менее биологи из Вашингтонского университета в Сент-Луисе продемонстрировали такую возможность. Об этом Фучжун Чжан (Fuzhong Zhang) и его соавторы пишут в статье, опубликованной в журнале Nature Communications.
Дело в том, что структурно титин состоит из отдельных «модулей», собранных в основном из доменов двух типов. Центральную, длинную и эластичную, часть белка образуют цепочки иммуноглобулиноподобных доменов. Ученые сконцентрировались на них, перенеся в клетки кишечной палочки кроличий ген, кодирующий блок из четырех Ig-доменов, а также гены пары других белков, облегчающих их полимеризацию в более длинные структуры.
Действительно, такие «кирпичики» затем легко полимеризовались, образуя молекулы массой более двух миллионов а.е.м. Из их раствора с помощью «мокрого» способа сформировали готовые волокна диаметром около 10 микрометров — примерно вдесятеро меньше человеческого волоса. По оценкам авторов, из одного литра раствора удается получить около 250 метров такого волокна. Далее биологи рассмотрели структуру и свойства полученных нитей, отметив их «выдающиеся механические характеристики».
Волокна искусственного титина продемонстрировали высокую растяжимость и прочность на разрыв выше, чем даже у знаменитого кевлара. Авторы уверены, что в будущем такие волокна могут найти применение в производстве как защитного снаряжения, так и просто одежды. А биосовместимость титиновых нитей обещает возможность использования нового материала в медицине — например, для получения сверхпрочных хирургических нитей.
Комментарии
Для бронежилетов пойдёт?