Астрономия

Планеты вокруг крупных звезд «распухли» от легких газов

Чем крупнее звезда, тем в норме больше средний радиус ее планет. До недавних пор причины этого были не вполне ясны. Сейчас астрономы показали, что ситуацию нельзя объяснить только тем, что у крупных звезд массивнее и планеты: как оказалось, важную роль играет совсем другой фактор.

Из 4434 кандидатов в экзопланеты основную часть обнаружили у красных карликов — звезд малой массы и размеров. Те планеты, что находятся вокруг более массивных звезд — оранжевых карликов, как альфа Центавра B или желтых карликов, как наше Солнце, — в среднем показывают более крупные размеры. В новой работе, готовящейся к публикации в Astronomy & Astrophysics, международная группа исследователей показала причины этой закономерности. Дело оказалось не только в массе, но и в другом химическом составе планет у более массивных звезд. С текстом соответствующей статьи можно ознакомиться на сервере препринтов arXiv.org.

Реальные причины того, почему радиус планет у более массивных звезд больше, чем у менее массивных светил, могут быть разными. До сих пор в научной литературе предлагали три возможных объяснения. Во-первых, более крупные звезды имеют большую светимость — нагрев от их лучей мог «раздувать» газовые оболочки их планет за счет теплового расширения. Во-вторых, планеты у более массивных звезд образовались из протопланетного диска больших размеров и могли иметь более высокую среднюю массу. В-третьих, экзопланеты у массивных звезд могли иметь более высокое содержание легких газов — и, значит, меньшую среднюю плотность и большие размеры даже при обычной, средней массе.

Распределение известных экзопланет по типам. Желтым показаны твердые планеты, типа Земли или Марса, зеленым — миры, покрытые лавой, синим — планеты-океаны и ледяные гиганты. Розовым показаны «горячие юпитеры», а фиолетовым — холодные газовые гиганты, типа нашего Юпитера или Сатурна / ©NASA

Авторы работы решили проверить все три версии. Для этого они сделали три предсказания, правота или неправота которых соответствовала каждому из указанных выше вариантов. Если верно первое объяснение — о расширении атмосфер от нагрева, — то расчетная температура планет у более массивных звезд должна быть тем больше, чем больше радиус такой планеты (раз ее «раздувает» от нагрева). Если верно второе объяснение — то есть вокруг массивных звезд и планеты образуются более массивными, — то чем выше масса экзопланеты, тем больше должен быть ее радиус. Причем такая зависимость должна быть относительно линейной и предсказуемой. Проверить верность третьего объяснения сложнее всего, ведь точно выяснить состав экзопланеты трудно. Однако, если она при умеренной массе и расчетной температуре имеет очень большой радиус, то ясно, что в ней содержится больше легких элементов, чем в планетах у менее массивных звезд.

С помощью расчетов исследователям удалось показать, что у планет вокруг менее массивных звезд ниже доля легких элементов — в особенности гелия и водорода. Только этим можно объяснить наблюдаемые у них радиусы при фиксируемой массе. Массу экзопланет можно определить методом лучевых скоростей. В своем анализе астрономы в этот раз сосредоточились на планетах оранжевых и желтых карликов, поскольку планет у красных карликов известно много больше и там анализ был бы более трудоемким. Несмотря на это, они отмечают, что выводы явно распространяются и на экзопланеты в системах красных карликов. Именно поэтому, по мнению ученых, там куда больше доля планет земного типа и заметно меньше число гигантских планет с большим содержанием газов — типа Юпитера или Сатурна в Солнечной системе. Из этого косвенно следует, что и шансы на возникновение жизни земного типа у менее массивных звезд могут быть выше, чем у более массивных вроде нашего Солнца.

По вертикальной оси — радиус планет, по горизонтальной — масса их звезд. Пурпурные кресты соответствуют планетам вокруг белых звезд спектрального класса F, синие квадраты — вокруг звезд класса G (как наше Солнце), красные значки — планетам вокруг оранжевых карликов (класс К), желтые — вокруг красных карликов (класс М) / ©Michael Lozovsky et al.

Как отметили исследователи, выявленная ими закономерность не распространяется на звезды массивнее желтых карликов — например, на бело-желтые светила спектрального класса F. Причина в том, что те имеют слишком большую светимость, поэтому способны в значительной степени лишить свои планеты легкой газовой оболочки (из водорода и гелия) за относительно короткие сроки.

Пока не вполне понятно, почему планеты более массивных звезд содержат больше водорода и гелия, — детали процесса образования планет до сих пор не ясны астрономам. Но известно, что в Солнечной системе планеты-гиганты с водородом и гелием в атмосфере образовались первыми, а только затем возникли планеты земного типа — Меркурий, Венера, Земля и Марс. При этом влияние массивного Юпитера, близкого к Марсу, лишило Красную планету возможности иметь значительную массу и в итоге плотную атмосферу и высокую жизнепригодность.

Комментарии

  • "...влияние массивного Юпитера, близкого к Марсу, лишило Красную планету возможности иметь значительную массу..."
    Округленно минимальное расстояние между Марсом и Землей в противостояниях составляет ~ 56,7 млн км, а между Марсом и Юпитером -- 533,9 млн км. При этом противостояния Марса и Юпитера происходят раз в шесть реже, чем Марса и Земли. Учитывая, что сила гравитационного взаимодействия обратно пропорциональна расстоянию и прямо пропорциональна массам и частоте "встреч" планет на орбитах, можно прикинуть, что гравитационное влияние Земли на Марс как минимум в 1, 7 раза больше, чем Юпитера...

    • А вот если бы прочитали одну из ссылок в этой статье, то знали бы, что в прошлом, в период формирования планет, Юпитер был куда ближе к орбите Марса, из-за чего ваши рассуждения с расчетами расстояний не имеют никакого смысла.

      Однако вы не читали. Вам ведь тема неинтересна, вы же ее комментируете не ради нее самой.

      • в период формирования планет, Юпитер был куда ближе к орбите Марса

        Это одна из гипотез. Есть еще теории о миграции гигантов с внутренних орбит на нынешние места. Столь же основательные, как заявления о том, "что в Солнечной системе планеты-гиганты с водородом и гелием в атмосфере образовались первыми"...
        В качестве одного из доказательств влияния Юпитера вы приводите то, что Марс маленький с тонкой атмосферой. а то, что он маленький объясняете влиянием Юпитера...
        Это не наука, а спекуляции...
        Тем более, что ничто не мешает предположить, что если Юпитер был ближе к Марсу, то и тот был тогда ближе к Земле (причем, возможно, пропорционально намного ближе, чем нынешняя пропорция расстояний в системе Юпитер -- Марс -- Земля)...
        Что касается первобытной атмосферы и вод Марса, то их еще предстоит обнаружить под миллиардолетними наносными породами. Я уже однажды здесь объяснял, почему и как они там очутились...
        Теперь насчет упрека о непрочитанных ссылках -- в словах "ознакомиться" и "лучевых скоростей" нет и намека на то, что они как-то связаны с вашими безапелляционными утверждениями в конце вашего текста.
        Но вот с чем я в нем совершенно согласен, так это со следующим абзацем:
        "Пока не вполне понятно, почему планеты более массивных звезд содержат больше водорода и гелия, — детали процесса образования планет до сих пор не ясны астрономам".

        • "Это одна из гипотез. Есть еще теории о миграции гигантов с внутренних орбит на нынешние места. Столь же основательные, как заявления о том, "что в Солнечной системе планеты-гиганты с водородом и гелием в атмосфере образовались первыми"."

          То, что вы не можете выяснить, какая из гипотез в отношении пношлого Солнечной системы более основательна и почему -- это ваша проблема. У других такой нет.

          "то не наука, а спекуляции."

          Голословные суждения по теме от человека, который не знаком с астрономией в данном аспекте вряд ли могут кого-то заинтересовать. Кроме вас самого, конечно.

          "Теперь насчет упрека о непрочитанных ссылках -- в словах "ознакомиться" и "лучевых скоростей" нет и намека на то, что они как-то связаны с вашими безапелляционными утверждениями в конце вашего текста. "

          Вы даже не смогли обнаружить третью гиперссылку в статье -- но при этом даете себе смелость оценивать "безапелляционость" моих утверждений.

          • Неубедительно...

            Вы даже не смогли обнаружить третью гиперссылку в статье -- но при этом даете себе смелость оценивать "безапелляционость" моих утверждений.

            Вот это одно из ваших безапелляционных утверждений: в настоящий момент оранжевым цветом (означающим ссылку) у вас выделены только слова"ознакомиться" и "лучевых скоростей". Врезка с анонсом заметки себя, любимого, ссылкой считаться не может, а лишь настойчивым желанием увеличить "кликабельность" своих опусов.

            То, что вы не можете выяснить, какая из гипотез в отношении пношлого Солнечной системы более основательна и почему -- это ваша проблема. У других такой нет.

            Вот это ваше личное убеждение, к аргументам дискуссионного свойства не относящееся, а лишь выразительно демонстрирующее характерные черты вашего Эго...

          • "Неубедительно..."

            Мне все равно, убедительно вам или нет.

            "Вот это одно из ваших безапелляционных утверждений: в настоящий момент оранжевым цветом (означающим ссылку) "

            Подсказка: гиперссылки на странице могут выделяться не только оранжевым цветом, но и другими средствами.

            "Врезка с анонсом заметки себя, любимого, ссылкой считаться не может,"

            Гиперссылкой в русском языке считается все, что соответствует определению гиперессылки: https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%BF%D0%B5%D1%80%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0 Поэтому то, что вы называли "врезкой" тоже является гиперссылкой.

            "Вот это ваше личное убеждение, к аргументам дискуссионного свойства не относящееся"

            Мне совершенно все равно, что вы думаете о том, что и к чему относится.

          • Максима А. Березина
            Пункт 1. А. Березин всегда прав!
            Пункт 2. А если Березин неправ, смотри пункт первый...

  • Эти исследования крайне преждевременны. Нет не только зондов, способных проверить обитабельность планет в приемлемые сроки, но и средств доставки, которые даже близко не дотягивают до провального корабля поколений из " Пасынков Вселенной"

    • Я не совсем понял: вы сейчас об исследованиях Солнечной системы, о которых новость выше? Или о других звездах? С последними, в принципе, средства есть: действительно успешная жизнь земного типа доступна к выявлению уже "Уэбом" и космическими телескопами ближайших 20-30 лет.

      П.С.: извините, частично невпопад ответил, перепутал две новости.

      Но, все же, планету типа Земли последних 500 млн лет в телескоп действительно можно выявить -- если она транзитная.

    • Ну наблюдать не жениться )) Пока конечно нет как минимум одной технологии описанной Хайнлайном - ковертер, который превращает _любую_ массу в энергию, на чем у них там все и работает. Начиная от Главного двигателя и заканчивая освещением в деревне.