Астрономия

На юпитерианских орбитах оказалось достаточно много суперземель

Большинство экзопланет обнаруживают на короткопериодичных орбитах, в том числе из класса суперземель. Эти тела по размеру занимают промежуточное положение между Землей и Нептуном. А вот газовые и ледяные гиганты располагаются, как правило, на далеких орбитах. Есть ли там место менее крупным планетам, не вполне ясно. Ученые решили оценить количество суперземель на юпитерианских расстояниях от звезды с помощью метода микролинзирования.

Гравитационное микролинзирование проявляется, когда между далеким источником излучения и наблюдателем проходит некий объект, чье гравитационное поле искажает идущий от источника свет. Объект, который может быть планетой, коричневым карликом или даже темной материей, называют линзой. Искаженный гравитационной линзой свет усиливается, образуя характерный пик на кривой блеска. 

Если источник и линза — звезды, то всплеск яркости длится несколько месяцев. Если у звезды-линзы есть планета, то она создаст еще одну аномалию на кривой блеска, продолжительностью дни или даже часы, как в случае с суперземлями. При этом данные от одной обсерватории будут неполны из-за смены дня и ночи или плохой погоды. 

Чтобы получить непрерывную кривую блеска при наблюдении суперземель методом гравитационного микролинзирования, необходимо объединить наблюдения от нескольких обсерваторий. Таких, например, которые образуют Корейскую сеть телескопов для микролинзирования (KMTNet). Это три телескопа, установленные в Чили, Африке и Австралии. Неудивительно, что именно коллаборация KMTNet открыла суперземлю, движущуюся на очень далеком расстоянии от своей звезды, примерно как Сатурн от Солнца. Статья об этом вышла в журнале Science

Периоды обращения и соотношения масс планет к массам звезд-хозяевам / © Weicheng Zang, Science, 2025

Ученые проанализировали событие микролинзирования OGLE-2016-BLG-1195, открытое в 2016 году в Оптическом эксперименте по гравитационному линзированию. Затем его наблюдали на KMTNet и в коллаборации «Астрофизические наблюдения микролинзирования» (MOA).

Лучше всего кривая блеска события OGLE-2019-BLG-0301 описывалась wide-моделью с s = 2,83, что означает 2,83 радиуса Эйнштейна для этой системы. А соотношение масс звезды и планеты — 6,79 × 10−6, что примерно вдвое больше, чем для системы Солнце — Земля. Это позволило предположить, что в событии OGLE-2019-BLG-0301 участвовала суперземля, вращающаяся вокруг звезды на орбите, примерно как у Сатурна. 

Кривая блеска события OGLE-2016-BLG-0007 / © Weicheng Zang, Science, 2025

Ученые проанализировали данные наблюдений KMTNet за несколько лет и выявили 60 похожих суперземель. Тогда они посчитали, сколько можно обнаружить таких объектов на похожих на юпитерианские орбитах, и оказалось, что совсем немало — 0,35 штуки на звезду (на декаду логарифма массы).

Причем эти данные лучше всего объяснила модель с двумя популяциями планет: суперземель и газовых гигантов. Но тогда нужно допустить, что в их формировании участвовали различные механизмы.