Астрономия

Астрофизики нашли объяснение, почему экзопланет вдвое крупнее Земли так мало

Космические телескопы «Кеплер» и TESS расширили наше представление о том, какими бывают планеты вне Солнечной системы. Инструменты «Джеймса Уэбба» и наземные обсерватории каждый день дополняют эти знания, но есть проблема, объяснение которой долго не удавалось найти. Распределение размеров более чем пяти с половиной тысяч подтвержденных экзопланет имеет заметный провал в диапазоне около двух радиусов Земли.

Эту аномалию астрофизики и астрономы предсказали давно, более 40 лет назад, на основании вероятности миграции планет по планетарной системе. Идея была в том, что, приближаясь к звезде, мини-нептуны (газовые карлики), ледяные гиганты (планеты, похожие на Уран и Нептун) и суперземли (каменистые планеты, имеющие радиус в диапазоне 1,2-2 земных) теряют часть своего вещества. Однако эта теория имеет множество недочетов. В частности, она недостаточно хорошо предсказывает в симуляциях реальное положение вещей в нашей и других известных планетарных системах.

Команда исследователей из Института астрономии общества Макса Планка (MPIA) уже несколько лет пытается улучшить существующие модели, описывающие эволюцию планетарных систем. Предыдущая их работа 2020 года существенно приблизила результат симуляции к реальности.

Теперь ученые сделали следующий важный шаг и среди прочего добавили в расчеты динамику поведения молекулярной воды в разных условиях. Это решение оказалось невероятно плодотворным: в результате симуляция показала распределение размеров экзопланет, которое очень близко к действительно наблюдаемому.

Новая научная работа опубликована в рецензируемом журнале Nature Astronomy, ее текст находится в открытом доступе. Авторы предложили следующее объяснение феномена «дефицита суперземель».

Мини-нептуны, как и их более крупные «родственники» — ледяные гиганты, — формируются во внешней части протопланетного диска. Там находится большая часть вещества, которое астрофизики называют льдом, то есть все, что имеет температуру замерзания выше 100 кельвин: вода, аммиак, метан. Рано или поздно гравитационные возмущения от более крупных планет могут вынудить тела радиусом в диапазоне от полутора до четырех земных мигрировать.

Когда мини-нептун приближается к светилу, его сравнительно тонкая атмосфера из гелия и водорода начинает интенсивно улетучиваться под действием излучения звезды. Этот процесс предсказывали ранее. А вот новшество свежей научной работы — эффект от нагрева «льдов» (особенно воды) в составе экзопланеты. Подробная симуляция показала, что, испаряясь, это вещество формирует гораздо более плотную и объемную атмосферу, чем считалось ранее.

Распределение размеров наблюдаемых (синие столбцы) и симулированных (красные столбцы) экзопланет. Вертикальная шкала — процент от общего числа экзопланет, горизонтальная шкала — радиус экзопланет по отношению к земному. Светло-зеленым показана «долина» недостающих суперземель и мини-нептунов диаметром от 1,8 до 2,2 земного / © R. Burn, Ch. Mordasini, MPIA

Поскольку наши инструменты не позволяют отдельно измерять радиус «твердой» части экзопланеты и толщину ее атмосферы, для земных обитателей такие мини-нептуны выглядят существенно больше. В основном их размеры в симуляции оказались ближе к 2,4 радиуса нашей планеты, что хорошо согласуется с результатами наблюдений. Проще говоря, приближаясь к звезде, газовые карлики теряют небольшую часть вещества, но заметно прибавляют в объеме.

Суперземли, в свою очередь, ведут себя немного иначе. Каменистые планеты формируются близко к светилу, и, даже если успевают собрать много легкого вещества, большую его часть со временем уносит излучением звезды. Сохранить большой диаметр у них получается только при формировании на большом удалении от нее, а это редкость. Если же каменистая экзопланета с рождения или в результате миграции оказывается ближе к звезде, она быстро «усыхает».

Исследователи из MPIA не считают свою улучшенную модель совершенной — в ней по-прежнему много неточностей. В частности, именно для суперземель симуляция показала наибольшее расхождение с данными наблюдений. И это намекает на дальнейшее направление работы ученых.

Тем не менее новые результаты позволяют лучше понять эволюцию планетарных систем. В особенности то, как внедрение в симуляции более полных моделей поведения вещества даже на самых малых масштабах помогает существенно повысить точность финального результата.