Астрономия

Испускаемый нейтронными звездами при слиянии сигнал оказался похож на звук камертона

Астрофизики предложили заглянуть в недра нейтронных звезд, фиксируя колебания гравитационных волн, возникающих непосредственно в момент слияния. Раскрыть важнейшую информацию о ядерных процессах внутри светил можно, поймав особый «чистый» сигнал.

Будучи одним из исходов звездной эволюции, нейтронные звезды представляют собой экстремальные объекты: их масса превосходит солнечную иногда в 2,16 раза, а радиус достигает 10-13 километров. Поскольку давление и плотность вещества внутри этих небесных тел настолько велики, что воспроизвести их в лабораторных условиях нельзя, вопрос о том, какую роль играют ядерные взаимодействия при столь высоких давлениях, остается одним из главных в современной астрофизике.

Вот почему ученых так интересует слияние нейтронных звезд (в результате которого формируется более массивная нейтронная звезда или черная дыра). Когда две нейтронные звезды обращаются вокруг друг друга, то двигаются по спирали вследствие излучения гравитационных волн — искажений в пространстве-времени, распространяющихся по Вселенной со скоростью света. 

Самые мощные колебания возникают непосредственно в момент слияния и в последующие миллисекунды, когда возникает чрезвычайно массивная и быстро вращающаяся нейтронная звезда, которая какое-то время излучает гравитационные волны с характерной узкой полосой частот. Именно за этим «чистым» сигналом ученые и «охотятся». 

Впервые сигнал, испускаемый нейтронными звездами при слиянии, зафиксировали в 2017 году с помощью детекторов гравитационных волн LIGO (расположены в США) и Virgo (Италия). Источником волны под названием GW170817 стали два объекта массой около 1,1 и 1,6 солнечной массы соответственно. 

Теперь ученые из Франкфуртского университета имени Иоганна Вольфганга Гёте (Германия) выяснили, что, хотя сила такого «чистого» сигнала постепенно ослабевает, его частота стремится к некоему постоянному значению. Эту стадию астрофизики назвали «продолжительным затуханием» по аналогии с камертоном — когда у последнего спустя время исчезают лишние обертоны, остается лишь одна основная нота. 

Результаты исследования, опубликованного в журнале Nature Communications, показали, что именно в этой «чистой ноте» скрыта важная информация о плотности и давлении внутри нейтронных звезд. 

К такому выводу ученые пришли, применив компьютерное моделирование: «продолжительное затухание» оказалось напрямую связано с максимально возможным давлением и плотностью в ядрах звезд. Таким образом астрофизики смогли «нащупать» самые экстремальные участки диаграммы состояний вещества.

«Благодаря новейшим методам статистического моделирования и высокоточным симуляциям на мощных суперкомпьютерах, мы нашли новую фазу  „продолжительного затухания“ при слияниях нейтронных звезд. Этот эффект может обеспечить новые и строгие ограничения на состояние вещества внутри светил», — объяснил один из авторов научной работы Кристиан Эккер (Christian Ecker). 

Хотя современные гравитационно-волновые обсерватории (LIGO, Virgo, KAGRA) до сих пор не смогли «услышать» «чистый» сигнал слияния нейтронных звезд, исследователи надеются, что зарегистрировать его смогут детекторы будущего поколения. Если их выводы верны, то «продолжительное затухание» станет незаменимым инструментом для изучения строения одних из самых плотных и экстремальных объектов во Вселенной.