Физика

Физики пустили волну в сверхпроводимости нового материала

Физики из США и Японии спроектировали и произвели материал с волнообразной структурой, необычными сверхпроводящими и металлическими свойствами. Материал предварительно спроектировали теоретически, и после изготовления он показал все запланированные свойства.

Двумерные материалы, состоящие из небольшого числа слоев атомов, привлекают внимание физиков широкими возможностями модификаций. Повороты и скручивания под небольшим углом создают уникальный узор — муаровую сверхрешетку — который приводит к появлению в материале сверхпроводимости и неклассического магнетизма. 

Но такие конфигурации материалов сложно как создавать, так и изучать из-за их атомарной толщины. Авторы исследования применили другой подход. Они создали материал с помощью «рационального проектирования» — моделирования материалов с желаемыми свойствами. Работа опубликована в журнале Nature

Исследователи смешали порошки сульфида стронция (SrS), тантала (Ta) и серы (S) в присутствии хлорида стронция (SrCl2), нагрели их до сотен градусов Цельсия и положились на химические реакции, которые естественным образом сформировали макроскопические кристаллы с нужными свойствами. Параметры материала определяют взаимодействия на атомарном уровне. Простоту формирования материала исследователи считают прорывом. Полученный материал состоит из слоев H-TaS2 и SrTa2S5.

Структура материала необычна — он сформирован волнообразными слоями, толщина которых составляет миллиардные доли метра. Слоев достаточно для образования крупного, подходящего для точных исследований образца. Большие размеры упрощают изучение взаимодействий на атомном уровне, формирующих свойства вещества. 

Хотя существуют и другие материалы с волнообразными атомными структурами, исследователи считают свой образец самым совершенным. Наноразмерные слои волн равномерны по всему кристаллу, в тысячах слоев. 

Новый материал напоминает слоеный пирог: он состоит из атомарно тонкого слоя тантала и серы, уложенного на промежуточный слой стронция, тантала и серы. Эта структура повторяется тысячи раз, образуя макроскопический кристалл. 

Вид на волны в слое H-TaS2, просвечивающая электронная микроскопия © Checkelsky Lab, MIT

Волны в кристалле возникают из-за несоответствия друг другу размеров и типа кристаллической решетки соседних слоев материала. Слой без стронция изгибается, чтобы уместиться поверх другого слоя, создавая волны. Представьте, что вы кладете лист бумаги формата А3 на меньший лист А4. Чтобы первый лист уместился, ему придется изогнуться. В новой структуре листы как бы «закреплены» в нескольких точках, создав волны. 

Наноразмерные волны объясняют необычные свойства материала. При температуре около трех градусов Кельвина он становится сверхпроводником, а сверхпроводимость повторяет волнообразность. В некоторых местах она сильнее, в других слабее. 

Материал обладает и необычными металлическими свойствами. Потому что электронам легче двигаться вниз по впадинам волны, чем подниматься и преодолевать вершины. 

Химики и материаловеды планировали новый материал исходя из того, какие свойства хотели получить. Результат эксперимента обладает заданными свойствами. Это означает, что ученые смогут создать еще больше материалов с заранее известными свойствами, а не исследовать параметры случайных материалов.