Site icon Naked Science

Физики объяснили происхождение магических чисел

Энергии протонов в олове-132 в зависимости от энергетического разрешения. Справа — спектр для единичных частиц, рассчитанный по хиральной EFT (эффективной теории поля). Слева пунктиром — спектр, полученный из оболочечной модели по экспериментам. Прямыми линиями слева показан энергетический спектр, полученный уменьшением энергетического разрешения по ETF. Магические числа для оболочечной модели совпадают с числами для низкого разрешения / © адаптированное для https://physics.aps.org/ изображение из C.R. Ding et al.

Энергии протонов в олове-132 в зависимости от энергетического разрешения. Справа — спектр для единичных частиц, рассчитанный по хиральной EFT (эффективной теории поля). Слева пунктиром — спектр, полученный из оболочечной модели по экспериментам. Прямыми линиями слева показан энергетический спектр, полученный уменьшением энергетического разрешения по ETF. Магические числа для оболочечной модели совпадают с числами для низкого разрешения / © адаптированное для https://physics.aps.org/ изображение из C.R. Ding et al.

Хотя каждый химический элемент определяется фиксированным числом протонов в атомном ядре, количество нейтронов в нем не фиксировано. Такие ядерные конфигурации образуют семейства изотопов элемента — заряд у них одинаковый, а массовые числа различаются.

Если соотношение протонов и нейтронов становится слишком несбалансированным, ядро теряет стабильность и может спонтанно распадаться. Тяжелые элементы с большим ядром обычно имеют меньше стабильных изотопов.

При определенных числах протонов и нейтронов некоторые изотопы оказываются необычайно стабильными. Причины этого физики долго не могли полностью объяснить. Такие «магические ядра» ученые часто описывают с помощью оболочечной модели ядра. Эта концепция рассматривает нуклоны, протоны и нейтроны как частицы, занимающие дискретные энергетические уровни. Переходы между уровнями при этом сопровождаются поглощением или испусканием энергии из ядра.

Несмотря на то что оболочечная модель ядра позволяет предсказывать, какие комбинации нуклонов образуют магические ядра, она не полностью отражает физику реальных атомных ядер. Например, она не может использовать в моделировании в явном виде сильное ядерное взаимодействие — силу, которая связывает нуклоны и позволяет положительно заряженным протонам сосуществовать в ядре, не разлетаясь в разные стороны. Долгое время объяснить существование магических ядер при действии сильного взаимодействия было серьезной проблемой для физиков-теоретиков.

Научная группа под руководством Чэньжуна Дина (Chenrong Ding) из Университета Сунь Ятсена (Китай) нашла способ это сделать. Физики описали квантовую систему атомного ядра с помощью набора волновых функций, описывающих возможные состояния системы и вероятность каждого из них. Ученые не могут непосредственно наблюдать энергетические уровни нуклонов в ядрах и взаимодействия между ними. Но их коллективно передает волновая функция, описывающая ядро целиком.

Исследователи сосредоточились на олове-132 — дважды магическом изотопе, содержащем 50 протонов и 82 нейтрона. Они изучили реальные данные об олове с высоким энергетическим разрешением и «размыли» картину до низкого разрешения, в рамках которого ядро описывается волновой функцией. При этом процессе естественным образом проявилась ожидаемая в рамках теории оболочечного строения ядра картина энергетических уровней. Магические числа протонов и нейтронов, как и предсказывает оболочечная модель, остались неизменными. Исследование опубликовано в журнале Physical Review Letters.

Физики нашли в ядрах переход от спиновой к псевдоспиновой симметрии с уменьшением разрешения, который сопровождается появлением магических чисел нуклонов. Основную роль в спин-орбитальном расщеплении играют силы трехнуклонного взаимодействия. Этот переход ученые наблюдают в разных ядрах, при разных взаимодействиях в релятивистской и нерелятивистской парадигмах

Этот результат впервые позволил ученым преодолеть разрыв между двумя основными подходами в теории строения ядра: моделями, описывающими поведение ядер из экспериментов, и методами из первых принципов, стремящимися вывести это поведение из фундаментальных сил. Исследователи надеются, что их подход позволит физикам исследовать слабо изученные области карты ядер и в итоге прольет новый свет на все еще загадочные свойства самых тяжелых и экзотических ядер.

Exit mobile version