Физика

Большой адронный коллайдер «подсказал», где искать частицы темной материи

Работающие в ЦЕРН исследователи создали новый метод поиска частиц темной материи с помощью Большого адронного коллайдера. Его впервые применили минувшим летом, и результаты этой работы получились двоякими. С одной стороны, долгожданных частиц пока найти не удалось, с другой — теперь ученые знают, в каких диапазонах энергий вимпов, скорее всего, точно нет.

Темная материя — одна из наиболее интригующих загадок современной физики. Шутка ли: мы уже почти 100 лет подряд обладаем хорошо подтвержденными теориями устройства мира, но при этом не можем уверенно объяснить, из чего состоит более 95 процентов Вселенной. Примерно две третьих всей массы Вселенной приходится на темную энергию (о ней в другой раз), а около четверти — неуловимые частицы, природа которых неизвестна. Поэтому ученые упорно пытаются разработать самые разные способы их зафиксировать.

Определенные успехи есть, но прогресс очень медленный. Немного ускорить его предложили участники коллаборации ATLAS — одного из четырех основных экспериментов, которые проводят на Большом адронном коллайдере (БАК, LHC) европейской организации ядерных исследований ЦЕРН (CERN). Суть идеи Дипака Кара (Deepak Kar) и Суканьи Синха (Sukanya Sinha) заключается в следующем.

Согласно некоторым моделям, частицы темной материи состоят из «зеркальных» версий фундаментальных кирпичиков обычной (барионной) материи, то есть «темных кварков» и «темных глюонов». Такие элементарные частицы имеют несколько важных потенциальных свойств. Во-первых, они без особого труда вписываются в модели темной материи, подразумевающие наличие слабо взаимодействующих частиц (вимпов, WIMP). Во-вторых, темные кварки с глюонами при определенных условиях все же взаимодействуют с обычными, только происходит это крайне редко.

Да, включение в теоретические построения дополнительных частиц, помимо уже имеющихся в Стандартной модели, никогда не выглядит особенно хорошим решением. Однако для проверки этой идеи пока не нужны какие-либо новые детекторы и эксперименты. Следы темных кварков должны быть видны в данных, полученных во время уже проведенных или запланированных столкновений частиц на БАК. Свою гипотезу Кар и Синха глубоко проработали и вместе с коллегами проверили на имеющихся данных.

Результаты этого исследования опубликованы в рецензируемом журнале Physics Letters B, текст находится в открытом доступе. С обзором научной статьи можно ознакомиться на портале эксперимента ATLAS и на сайте Университета Витватерсранда (University of the Witwatersrand, Йоханнесбург, ЮАР).

Большой адронный коллайдер разгоняет протоны или тяжелые ионы практически до скорости света, всего на 11 километров в час меньше нее. Когда они сталкиваются, их буквально разрывает на элементарные частицы, которые либо попадают на детекторы в неизменном виде, либо претерпевают цепочки преобразований. Улавливая частицы, получившиеся в результате этих преобразований, ученые анализируют фундаментальные природные взаимодействия и корректируют существующие теоретические модели.

Если во время каких-то столкновений даже на кратчайшие периоды времени возникали темные кварки и глюоны, их следы можно увидеть в данных БАК. Обычно парные пучки продуктов столкновений имеют одинаковую энергию, следовательно, сумма энергий всех «пойманных» в эксперименте частиц должна быть равной по обе стороны детектора. Но темные частицы с детектором взаимодействовать не будут и унесут энергию с собой — возникнет неравенство.

Правда, объем получаемой на установке информации так велик, что ее анализ занимает годы. Тем не менее первичную проверку своей гипотезы Кар и Синха провести смогли. Следов вимпов обнаружить не удалось — тут никакого сюрприза новое исследование не принесло. Зато получилось ограничить спектр энергий частиц, в котором могут «прятаться» искомые несимметричные пучки продуктов столкновений. Исследователи называют их полуневидимыми, поскольку частично заметить их все же можно.

Комментарии

  • ТМ это микрогравитация из другого измерения, паралельной вселенной

  • чтоб ваш коллайдер вместе с темной материей изчез навсегда, как и не было)

  • Комментарий удален пользователем или модератором...

    • Роман Рыбка, >у меня есть пару вопросов
      Нет у вас их. Есть только желание рассказать о своих рассуждениях, не имеющих отношения к научному познанию мира. Если бы у вас действительно были эти вопросы, вы бы попробовали узнать на них ответ. То есть, банально хотя бы забить в Гугл "LHC centrifugal/centripetal force". Внезапно, те люди, которые строили самый дорогой и сложный научный инструмент такую очевидную вещь учли.

      Вот тут на пальцах объясняется, почему центробежная сила в ускорителях частиц роли не играет:
      https://physics.stackexchange.com/questions/208231/do-particle-accelerators-centrifuge-the-quarks-of-a-proton

      А далее по запросу целый ворох доступных в открытом доступе научных и научно-популярных публикаций ЦЕРН и других коллективов, описывающих то, как ускоритель с этими силами работает и каким образом они учитываются или нет в экспериментах.

      Потому все, что написано после "Лично я уверен что этот момент учёными очень слабо решён" не имеет смысла и представляет собой пустую трату букв.

      No offense.