Квантовые суперпозиции больше не требуют температур, близких к абсолютному нулю. Ученые из Австрии впервые получили «горячие» состояния кота Шредингера при температурах, в десятки раз превышающих стандартные условия для подобных экспериментов.
Иллюстрация мысленного эксперимента кота Шредингера / © University of Innsbruck/Harald Ritsch
Кот Шредингера — мысленный эксперимент, в котором квантовый объект одновременно находится в двух состояниях: фигурально он и жив, и мертв. В реальных опытах аналоги таких состояний создают в атомах, молекулах или электромагнитных резонаторах.
До сих пор для этого требовалось охлаждать систему почти до абсолютного нуля, чтобы минимизировать помехи. Однако многие системы — от наномеханических осцилляторов до частиц в ловушках — сложно охладить до таких температур. Новая научная работа, опубликованная в журнале Science Advances, показала, что квантовые явления возможны и без экстремального охлаждения.
Группа исследователей провела эксперимент с использованием сверхпроводящего кубита и микроволнового резонатора. Ученые создали «горячие» состояния кота Шредингера — квантовые суперпозиции смещенных тепловых состояний — при температуре резонатора до 1,8 кельвина. Это в 60 раз выше температуры окружающей среды в установке.
Квантовые суперпозиции смещенных тепловых состояний упрощенно можно сравнить с гитарной струной. Если ее нагреть, она начнет вибрировать случайным образом из-за тепловых колебаний — это тепловое состояние. Теперь допустим, струну резко дернули в двух противоположных направлениях одновременно. Она начнет колебаться влево и вправо в один момент — это квантовая суперпозиция.
Сверхпроводящий кубит в такой системе играл роль миниатюрного переключателя для управления микроволновым резонатором. Специальными импульсами физики «толкали» фотоны в резонаторе в два противоположных направления, создавая два смещенных состояния.
Для их генерации применили два протокола: echoed conditional displacement (ECD) и qcMAP. Оба метода ранее использовали для создания «холодных» котов Шредингера из основного состояния системы. В новом эксперименте протоколы адаптировали для работы с тепловыми состояниями.
Ключевым шагом стало разделение фоковских распределений (состояния с заданным числом фотонов) исходного теплового состояния и смещенного состояния с помощью управляющих импульсов. Это разделило тепловой «фон» и смещенные состояния, что критически важно для наблюдения интерференции. Без такого разделения тепловые фотоны «замылили» бы квантовые эффекты.
Измерения функции Вигнера — инструмента для визуализации квантовых состояний — подтвердили наличие интерференционных паттернов с отрицательными значениями. Это прямое доказательство квантовой суперпозиции. Даже при начальной чистоте состояния всего 6%, что соответствует 7,6 тепловому фотону в резонаторе, интерференция сохранялась.
Интересно, что протоколы ECD и qcMAP, которые для «холодных» состояний дают идентичные результаты, при работе с тепловыми состояниями сгенерировали разные интерференционные картины. Например, в случае ECD амплитуда колебаний уменьшалась с ростом температуры, а в qcMAP сохранялась дольше, несмотря на увеличение тепловых возбуждений.
Температура перестает быть препятствием, если в системе есть нужные взаимодействия. Раньше считалось, что квантовые эффекты «тонут» в тепловом шуме. Авторы новой работы показали, что даже в «шумной» системе можно выделить суперпозицию — как различить два голоса в кричащей толпе.
Это открывает путь к использованию квантовых эффектов в системах, где достижение основного состояния технически невозможно. Например, в наномеханических осцилляторах или левитирующих частицах.