Физики применили новую технологию, чтобы глубже изучить роль молекул воды в ферментативном катализе карбоангидразы. Это в основном цинксодержащий металлофермент, повсеместно встречающийся у человека, животных и фотосинтезирующих организмов, а также у некоторых нефотосинтезирующих бактерий. Класс карбоангидраз регулирует, в частности, уровень углекислого газа (CO2) в организме и считается одним из самых каталитически эффективных известных ферментов.
Рассматривая динамические свойства ферментов, ученые не раз отмечали, что те неразрывно связаны с конформационными изменениями (изменениями формы макромолекулы, часто вызванными факторами окружающей среды) и движением молекул воды внутри и вокруг активного центра фермента.
В своем исследовании ученые из Ульсанского национального института науки и технологий (Южная Корея) взяли воду за неотъемлемый и активный компонент центра, поскольку ее молекулы — важные участники общей стабильности, структуры и динамики ферментов. Кроме того, молекулы воды играют существенную роль в их катализе и молекулярном распознавании.
До сих пор было крайне мало известно о том, как структура и динамика воды напрямую связаны с такими ферментативными механизмами, как связывание субстрата, стабилизация переходного состояния и высвобождение продукта. Ни одна ферментативная реакция из-за слишком быстрого темпа промежуточных этапов не была охарактеризована достаточно подробно. Углекислый газ (CO2) преобразуется с помощью белкового катализатора — карбоангидразы — в ионы бикарбоната (HCO3), растворяемые в крови, со скоростью более одного миллиона раз в секунду.
Авторы исследования кинетически захватили каталитические промежуточные продукты, от связывания CO2 до высвобождения бикарбоната, на временных отрезках короче одной наносекунды. Они объединили технику ультрафиолетового фотолиза, то есть процесса разрушения молекул под действием ультрафиолетового излучения, и рентгеноструктурный анализ кристаллов при различных температурах. Сначала фермент охлаждали до -183 градусов Цельсия, затем вводили светочувствительный субстрат (3NPA), который поставлял углекислый газ в активный центр фермента при воздействии ультрафиолета. Потом температуру постепенно увеличивали до -73 градусов Цельсия, фиксируя структурные изменения на каждом этапе.
Реконструкция полученных изменений и составила первый молекулярный фильм, в котором наглядно показано, как перегруппировка и замена молекул воды в активном центре фермента напрямую определяет скорость высвобождения продукта, в частности, бикарбоната. Авторы статьи отмечают, что столь глубокое исследование сложного взаимодействия между ферментами и водой обещает не только обогатить понимание молекулярной эволюции, но и дать толчок развитию инновационного дизайна лекарств и инженерии биокатализаторов.
Научная работа опубликована в журнале Nature Communications.